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Permutational symmetries for coincidence rates in multimode multiphotonic interferometry
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We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries
of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton
coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each
input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count
photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann
et al. [Phys. Rev. X 5, 041015 (2015)] that coincidence rates can be elegantly expressed in terms of immanants.
Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our
coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by
employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons
in arbitrarily sized interferometers.
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I. INTRODUCTION

Passive optical interferometry is the study of multiple pho-
tons interfering in passive interferometers, which are optical
devices that can realized by a combination of beam splitters and
phase shifters [1]. The distinguishability of the photons plays
a crucial role in determining their interference, first studied
theoretically by Fearn and Loudon [2,3] and experimentally
by Hong, Ou, and Mandel (HOM) [4] for a system of two
photons. The interference of many partially distinguishable
photons has been of interest recently following the proposal
of the BosonSampling problem [5] and historically due to
the interest in linear optical quantum computing [6]. These
quantum information tasks require the interference of perfectly
indistinguishable photons, which state-of-the-art experiments
are unable to deliver [7–12]. Therefore, it is important to char-
acterize the interference of partially distinguishable photons to
understand the relevance of experimental implementations of
quantum information tasks.

A number of recent studies provide theories of multipho-
tonic passive interferometry experiments to elucidate qualita-
tive features of optical systems [12–16]. One research direction
has been to determine whether the interference of partially
distinguishable photons yields a probability distribution that is
close to the probability distribution pertinent to the BosonSam-
pling problem [17,18]. Others have investigated the bunching
behavior of partially distinguishable bosons [15] and whether
such behavior can be exploited to create hypothetical particles
that possess arbitrary permutational symmetries [15]. It has
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been suggested that pairwise distinguishability may not be
sufficient to characterize the interference of many photons
[19]. Partial distinguishability can be controlled via degrees
of freedom such as path, time of arrival at the interferometer,
or polarization, and control via polarization can be achieved
by doubling the number of paths instead [20].

We aim to build upon a recently proposed description of
multiphotonic interferometry experiments that relates the inter-
ference of photons to the symmetries of their state [12,21,22].
For instance, the HOM effect occurs because two perfectly
indistinguishable photons maximally interfere because their
state is symmetric in the exchange of the photons, but two
partially indistinguishable photons partially interfere because
their state is a linear combination of the fully symmetric and
antisymmetric basis states. The work we build upon analyzes
multiphotonic systems using the representation theory of the
symmetric group, where previous authors limit themselves to
systems with exactly one photon in each input and output mode.
They show that by exploiting the permutational symmetries
of multiphoton states the photonic Hilbert space decomposes
into subspaces, where elements in each subspace possess
known permutational symmetries [23]. Distinguishability of
the input photons determines which subspaces their state lives
in. For instance, if photons are fully indistinguishable, then,
because they are bosons, their state is fully symmetric under
any permutation of the photons. As their distinguishability
increases, the multiphoton state extends into other subspaces.

Tillmann et al. [12] have advanced that the coincidence
rate can be expressed in closed form in terms of immanants
of the scattering matrix. Immanants are matrix functions con-
structed from the symmetric group; some of them, including
the permanent, are known to be hard to compute [24–26].
Specifically, coincidence rates are sums of squared moduli of
linear combinations of immanants where the coefficients in the
sum are functions of the photonic distinguishability. Here we
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assume that photons are only distinguishable by their time of
arrival at the interferometer.

Here we present major extensions to the results of
Refs. [12,21,22]. We discuss arbitrary input and output
configuration of partially distinguishable photons, i.e.,
possibly multiple photons in each input and output mode.
We employ the term input configuration to refer to a fixed
number of photons in each input mode and the term output
configuration to refer to a fixed number of counts at detectors
located in each output mode. We use symmetry arguments to
show that if there are multiple photons in some input or output
modes, then subspaces possessing certain symmetries do not
appear in the Hilbert space decomposition.

One of the aforementioned works [12] provides a procedure
to calculate coincidence rates for arbitrary total number of
photons. Crucial to the procedure is the factorization of the
coincidence rate into a matrix product [12,22]. One of these
matrices, called the rate matrix, features in other partial-
indistinguishability theories [14,15,17]. The elegant decom-
position of the rate into a matrix product provides insights into
the symmetry of the coincidence rate because the symmetric
group links partial distinguishability to representations, and
allows for the expression of the rates in terms of immanants.
Unfortunately, it is not shown that the Tillman et al. [12]
procedure is correct and works in all cases.

Here we fill this gap and extend their results by providing
procedures to understand coincidence rates at the output modes
of a passive interferometer for any given input and output
photon configuration, and proving that these procedures work.
We show that for any input and output configuration, the coinci-
dence rate can always be factored. Furthermore, we prove that
the rate matrix carries a representation of the symmetric group,
and hence can be block-diagonalized by standard methods [23],
leading to the expression of the coincidence rates in terms of
immanants. An example where this extension is immediately
useful is given in Sec. III, where we analyze corrections to the
HOM effect.

We use symmetry arguments to show, in Sec. III and more
generally, that, if there are multiple photons in some input or
output modes, then subspaces possessing certain symmetries
do not appear in the Hilbert space decomposition. Relevant
computational details for the problem of four photons in two
modes are found in Appendix A. Hence, given knowledge
of the distinguishability of the input photons, we are able
to identify which immanants appear in the coincidence rate
expression using physical arguments alone. Finally, we dis-
cuss, again in Appendix A, how the problem reducing the rate
matrix to block-diagonal form can be cast as an eigenvalue
problem using class operators. This implies in particular that
when some subspaces are known to be excluded by symmetry
arguments, one can better focus the computational resources
on the relevant subset of eigenvectors and related immanants.

We also show in Secs. II B and IV D that, under a rearrange-
ment of photons at the input of the interferometer, the coinci-
dence rates at the output of the interferometer are covariant
(but generally not invariant): the rates are expressed in terms
of the same immanants but with different coefficients. We show
these coefficients transform linearly under the rearrangement
of the input photons. Therefore, once the rate for one input is
known, the rates for any permuted input is easy to calculate.

Finally, we discuss in Sec. II C the transformation of rates under
permutation of modes.

Our formalism thus provides an intuitive qualitative under-
standing of how the permutational symmetries of distinguish-
able photons determine their interference. Our approach can be
used to better understand the effect of partial distinguishability
in modeling passive interferometry experiments aiming to
perform quantum information tasks such as linear optical
quantum computing [6] and BosonSampling [5,7–12]. By
exploiting symmetries, we can also reduce some calculational
tasks and provide additional insights into relations between the
coincidence rates in various situations.

We aim to focus on practical aspects of our methods;
therefore, we first present our results for an example of
four photons interfering in a three-mode interferometer in
Sec. II. Our second example, discussed in Sec. III, is a study
of the HOM experiment [4] for which the sources produce
more than one photon in each input mode. Technical details
and derivations of these examples have been postponed to
appendices, which can be pursued by the avid reader. In Sec. IV
we generalize these results for any multimode multiphoton
inputs and outputs. We summarize our results and provide a
conclusion in Sec. V.

II. FOUR PHOTONS IN A THREE-MODE
INTERFEROMETER

Our main results can be appreciated by analyzing some
relatively simple examples. Figure 1 shows three ways that four
photons can interfere in a three-mode passive interferometer.
We discuss how for such systems the Hilbert space decomposes
into a direct sum of permutationally invariant subspaces. We
show that the coincidence rates inherit these permutational
symmetries. Finally, we explain how the rate expressions for
these examples can be obtained from each other.

The examples shown in Fig. 1 can be described using four
pieces of information: the path of the photons (encoded in the
strings η and υ), the temporal state of the photons (encoded in
two string τ ), the measurement result (encoded in two string
μ), and the action of the interferometer (encoded in the matrix
U ). We describe and discuss each of these now.
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FIG. 1. An interferometer (hexagon) with three inputs (left edges)
and three outputs (right edges). The numbered and unnumbered
circles represent photons at the input and output ports. The photons
at the input are numbered as their distinguishability can be controlled
but those at the output are unlabeled as the detectors only count
the number of photons in each output port. The input states in the
three examples are (a) |211; 1123; τ 〉, (b) |211; 1213; τ 〉, and (c)
|121; 2213; τ 〉.
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First, we describe the configuration of the photons at the
input of the interferometer. We label an input configuration by
two strings. The first string η, called the input mode-occupation
string, records the number of photons in each input mode. For
the three examples η is 211, 211, and 121, respectively. If the
photons are all indistinguishable this is all that is needed to
describe the configuration of the photons.

If the photons are distinguishable or partially distinguish-
able, more information is needed. The string υ, called the
photon-occupation string, stores in which mode each of the
four photons are placed. For the first example, υ is 1123
because the first two photons are in the first mode while the
third and fourth photons are in the second and third modes,
respectively. For the other two examples, υ is 1213 and 2213,
respectively. The string υ contains all information needed to
label the configuration of distinguishable photons. The string
η can be found if υ is known, but we specify both in order to
simplify mathematical expressions that appear in this paper.

Photons have degrees of freedom besides path such as
spectra, polarizations, and times of arrival at the interferometer.
Therefore, to define a multimode multiphoton state we need
to specify the labels of each of these degrees of freedom. We
assume that the distinguishing degrees of freedom are under
the experimentalist’s control and the distinguishability of the
photons with respect to each other can be controllably tuned.
To keep the analysis simple we assume the photons arrive at
different times at the interferometer but are otherwise identical.
Therefore, a 4-tuple τ of arrival times is used to characterize
the distinguishability of the photons, where τi ∈ R is the time
of arrival of the ith photon.

Relative time of arrival is effective for controlling distin-
guishability, but photons can have other internal degrees of
freedom such as polarization or orbital angular momentum,
which needs another form of distinguishability control. How-
ever, polarization and other degrees of freedom are easily
incorporated into scalar-field interferometry by converting the
internal degree of freedom to a path degree of freedom [20].
Mathematically, conversion of polarization to path follows the
prescription that including “combinations of polarizers and
beam splitters, ... one extends to U(2n) ⊃ U(n) × U(2),” as
long as the same polarization transformation is applied to all
paths [27]. Polarization control has been employed for the
recent demonstration of the triad phase for three-photon three-
channel interferometry [19]. Our framework and expression
found in this paper can be generalized to multiple degrees of
freedom in a straightforward manner. In summary, we represent
multiphoton states as |η; υ; τ 〉. The input states of the three
examples shown in Fig. 1 are |211; 1123; τ 〉, |211; 1213; τ 〉,
and |121; 2213; τ 〉, respectively.

This labeling of input states reveals that these inputs are
related to each other by permutations. The input shown in
Fig. 1(b) is related to the canonical input [Fig. 1(a)] by a
permutation of the photons. Specifically, the second and third
photons have been swapped, which is apparent by comparing
υ = 1123 andυ ′ = 1213. The input shown in the third example
Fig. 1(c) is related to the canonical input by a permutation
of the input modes: the first and second modes have been
swapped, which can be determined by comparing their photon-
occupation strings. As permutations can be implemented by
linear transformations on the photons or modes, for a fixed

output event the coincidence rates for two permutations can be
obtained from each other by linear transformations.

In order to study the permutation of photons and modes
formally, we require the symmetric group Sn, which is the
set of all possible permutations of n objects. The objects can
be the n photons in the system, or the n possible modes of
the system. The action of this group on photons and modes
captures the types of permutations for which Figs. 1(b) and
1(c) are examples. For four photons in three modes, the group
S4 is used to define the action Pσ for σ ∈ S4 and the group S3

is used to define the action Qσ ′ for σ ′ in S3. While we formally
define these actions in Sec. IV, here we note that

P(23)|211; 1123; τ 〉 := |211; P(23)1123; τ 〉
= |211; 1213; τ 〉, (1)

Q(12)|211; 1123; τ 〉 :=|Q(12)211; Q(12)1123; τ 〉
=|121; 2213; τ 〉. (2)

The next aspect of the passive interferometry experiment to
be described is the interferometer. An interferometer is char-
acterized by a matrix U that specifies the linear transformation
undergone by the input state. This matrix might be unitary,
i.e., UU † = U †U = 1, but is assumed to be a general linear
complex matrix if the interferometer is lossy or if only m input
and output modes of a larger interferometer are used. For a
three-mode interferometer shown in Fig. 1, U is a 3 × 3 matrix
that is identical for all three examples.

Finally, we outline the measurement scheme. We treat the
detectors at the output of the interferometer as devices that
count the total number of photons in a mode regardless of
when they arrived at the detector. This lack of information
about the paths of the photons through the interferometer
generates the observed interference between the photon paths
[3]. This is why the photons at the outputs in Fig. 1 are not
labeled. As we are interested in finding how the coincidence
rate changes when the input state is modified, we fix the output
to be same for all three examples shown in Fig. 1. This output
event is the one where photon detectors placed in the three
output modes detect zero, two, and two photons, respectively,
conveniently represented by the output mode-occupation string
μ = 022. The following analysis can be performed for any
other output event by using the appropriate output mode-
occupation string μ. With our description of the components
of passive interferometry experiments complete, we can now
turn to the task of calculating coincidence rates for the three
examples shown in Fig. 1. This is the content of the next three
subsections.

A. Rate for the canonical input

The expression and calculations of the coincidence rate
in terms of immanants is a three-part procedure. First, the
Hilbert space of the photonic systems is decomposed into
permutationally symmetric subspaces with the aid of an ap-
propriately constructed basis-transformation matrix V . Next
the coincidence rate is calculated in the form suggested in
Refs. [12,22]. In this way of calculating the coincidence rate
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C(τ ), it is expressed as

C(τ ) = u†R(τ )u, (3)

where u is a vector, called the interferometer vector, which
depends only on the properties of the interferometer, whereas
the rate matrix R captures the effects of the time of arrival of
the photons on the coincidence rate. For the examples in Fig. 1,
u and R are of dimension 4!/2!2!0! = 6. The components of
u are polynomials in the entries of the matrix U and given
explicitly for this case in Eq. (A3). Additional properties of u
and R are described in Sec. IV. Finally, u and R are rotated by
V , which transforms the entries of u into sums of immanants
and R into a block-diagonal matrix. Hence, using Eq. (3) the
coincidence rate may be expressed in terms of immanants.

In this subsection, we only give a rough outline of how
to construct V , and in Appendix A work out fully the V

for the examples of this section. The reader is directed to
a textbook such as Ref. [23] for further details. Similarly,
exact expressions for u and R are delayed to Appendix A
because similar expressions have been derived in other places
[12,14,15,17,21,22], but we do provide general expressions
in Sec. IV. Our main concern here is to understand how
the symmetries of the coincidence rate C(τ ) depend on the
input and output configuration, and the distinguishability of
the photons.

We begin by decomposing the 34-dimensional Hilbert space
H of photon mode occupations of four photons in three modes.
We are interested in decomposing this space into the direct sum
of subspaces, where each subspace has known permutational
symmetries. This decomposition is divided into two steps. First
note that the full Hilbert space H is composed of orthogonal
subspaces, where each subspace Hμ corresponds to a distinct
mode occupation μ, i.e.,

H =
⊕

μi∈{0,...,4},∑
i μi=4

Hμ. (4)

One of these subspaces is H 022, which corresponds to the out-
put event of Fig. 1. These orthogonal subspaces can be further
decomposed into permutationally symmetric subspaces. As the
procedure is the same for all of them, we only discuss the
decomposition of H 022.

The H 022 subspace is 4!/(0!2!2!) = 6 dimensional. A
natural basis for this subspace is spanned by the six distinct
vectors obtained by applying the permutation operator Pσ to
|022; 2233〉 for σ ∈ S4. Formally we can express this basis as

B = {Pσ |022; 2233; τ 〉 : σ ∈ S4}. (5)

The action Pσ of S4 on this basis defines a six-dimensional
reducible representation � of S4, the formal definition of
which is provided in Sec. IV. In simple terms, given any
element σ ∈ S4, �(σ ) is the 6 × 6 permutation matrix that
exchanges the elements of B according to how Pσ acts on B.
Using standard representation theory methods, the reducible
representation � can be decomposed into a direct sum of
irreducible representations (irreps) [23] of S4.

The irreps of S4 are in one-to-one correspondence with
the conjugacy classes of S4, where each conjugacy class can
be labeled by a partition of 4. Partitions can be graphically
depicted by Young diagrams, so each irrep of the permutation

group can be labeled by Young diagrams. For S4, the five

possible 4-box Young diagrams are (the

diagram corresponds to the partition 3 + 1, etc.). Each
of these diagrams is a label for an irrep of S4. The Young
diagram corresponding to each irrep indicates the symmetries
of the irrep, where the irrep is symmetric across each row and
antisymmetric across each column.

Using standard representation theory methods [23], � de-
composes as

(6)

where is one-dimensional, is three-dimensional,

and is two-dimensional. The other two irreps of S4,

and , do not appear in the decomposition for our example.

This is because the output event μ = 022 requires symmetry
in the placement of the third and fourth photons since they

are in the same mode, but and are antisymmetric in the

third and fourth boxes. Further details on how to obtain this
decomposition are provided in Eq. (A18). This decomposition,
also called block diagonalization, of � can be realized by a
matrix we label as V , explicitly provided in Eq. (A26). This
matrix is used to rotate u and R.

The action of the permutation group commutes with the
action of the unitary group on photonic states [28–30], i.e.,

[U,Pσ ] = 0, σ ∈ S4. (7)

Consequently, the subspace H 022 decomposes as

(8)

where, in an obvious notation, H has the same permuta-
tional symmetries as , etc. The permutational symmetries
of these subspaces become clear when we discuss how the
coincidence rate varies as the distinguishability of the photons
is tuned.

As mentioned in the introduction and later proved in Sec. IV,
the coincidence rate at the output of the interferometer can be
expressed in the form (3). This is a generalization of the termi-
nology and formalism of previous work which was restricted to
one photon in each input and output mode [12,22]. Expressing
the rate in the form (3) is convenient for a number of reasons.
First, this form separates the effects on the rate of the interfer-
ometer and the time of arrival of the photons. The interferom-
eter vector u depends only on the entries of the interferometer
matrix U but not on the time of arrival of the photons. In the
basis B of Eq. (5), the entries of the interferometer vector are the
amplitudes of the transitions from the input state |211; 1123; τ 〉
to the vectors B associated with the output event μ = 022.

The rate matrix R depends on the time of arrival of the
photons, which determines their distinguishability. The entry
Rij of the rate matrix is determined by how distinguishable are
the ith and j th transitions whose amplitudes are recorded in
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the interferometer vector. The rate matrix is a square Hermitian
matrix.

The rate matrix does not depend in any way on the input
configuration of the photons. For a fixed output event such as
μ = 022, the rate matrix is the same irrespective of the input.
Concretely, for all inputs shown in Fig. 1, and for any other
input of four photons which are not related by permutations
to them (say |400; 1111; τ 〉), the rate matrix is the same. The
effect of the input configuration on the rate expression is only
felt through the interferometer vector.

Our main result, proved in Sec. IV, is that the rate matrix
carries a reducible representation � of S4. This means that the
rate matrix can be expressed as a linear combination of the
representations of all σ in S4. Mathematically, we write

R(τ ) =
∑
σ∈S4

�σ (τ )�(σ ), (9)

where �(σ ) is the representation of σ and �σ (τ ) is a
distinguishability-dependent coefficient. The expression of the
rate matrix in this form implies that the basis V that reduces �

also block-diagonalizes the rate matrix. In the block-diagonal
form, each block of the rate matrix is associated with an irrep
of S4 and is of the same size as the dimension of the irrep. The
coincidence rate (16) is calculated by employing the formula

C(τ ) = (V u)†[V R(τ )V †](V u). (10)

The elements of V u are sums of immanants of the scattering
matrix T , which here is a four-dimensional matrix formed
by taking the υ = 1123 rows (input) and ξ = 2233 columns
(output) of the interferometer matrix U ; i.e. T has entries

Tij := Uυi,ξj
. (11)

Immanants are matrix functions associated with the irreps of
the symmetric group. The irrep labeled by Young diagram λ is
associated with the immanant

immλT :=
∑
σ∈Sn

χλ(σ )

(
n∏

i=1

Tiσ (i)

)
, (12)

where χλ(σ ) is the character of the permutation σ in the
irrep λ.

We define Tσ as the matrix T with its rows permuted by
σ ∈ S4 (note T = Te). The set of immanants

{immλTσ : σ ∈ S4} (13)

has fewer distinct elements than |S4| = 24 because the im-
manants for two different σ may be equal (up to a constant);
i.e., it is possible that

immλTσ ∝ immλTσ ′ . (14)

For instance, the permanent imm T is fully symmetric
under any permutation of the rows of T ; i.e., for all σ ∈ S4, we

find that imm Tσ = imm T . On the other hand, for

half the σ ∈ S4, imm Tσ is proportional to imm T , and

for the other half imm Tσ is proportional to imm T(13).
Finally, due to the multiplicity of photons in input and output
modes (repetition of the rows and columns of T ), for all σ ∈ S4,

we find that imm Tσ is proportional to imm T . Therefore,

we can express the coincidence rate only in terms of the set of
immanants

(15)

We are now ready to express the coincidence rate for input
|211; 1123; τ 〉 and output μ = 022. The expressions for u, R,
and V , presented in Appendix A, are plugged into Eq. (10),
yielding the rate

(16)

where the coefficients αλ
σ,σ ′ (τ ) are labeled by the immanant to

which they are attached, e is the identity element in S4, and
c.c. refers to the complex conjugate of the preceding terms.
The αλ

σ,σ ′ (τ ) are linear combinations of �σ (τ ) and the full rate
is presented in Eq. (A35).

For the scattering matrix in this example there are two
different immanants of the type and one immanant of

the type. In general, there are three immanants so

they can span the three-dimensional subspace labeled by

in (6). Similarly, in general there are two immanants. The
full number of immanants does not occur as a result of the
multiplicity of photons in the input and output modes. There
are relatively simple rules for determining the number of
immanants of each type that appear in the rate and these are
presented in Sec. IV D.

The coefficients αλ
σ,σ ′(τ ) in (16) have well-defined behavior

for different regimes of the distinguishability of the photons.
We treat these cases one by one. If the photons are all
indistinguishable, i.e., ∀i,jτi = τj , then the coefficients take
values such that the rate reduces to

(17)

The rate depends only on the permanent of the scattering matrix
because permuting indistinguishable photons cannot change
the rate, and the permanent is the only immanant that does not
change under any permutation of its rows.

If three photons are indistinguishable but the fourth is
distinguishable from the three, then the rate depends on not
only the permanent but also on the -type immanants. In this

regime, the αe,e (τ ) in (16) vanishes. The next case is when the
photons are divided into two pairs such that the two photons
in each pair are indistinguishable with respect to each other,
but the two pairs are mutually distinguishable. In this case all
immanants appear in the rate and the rate has its most general
form of Eq. (16).

It is possible to make the photons even more distinguishable.
A pair of photons can be mutually indistinguishable, but the
pair is distinguishable with the third photon which is further
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FIG. 2. The coincidence rate C(τ ) for input state
|211; 1123; (0,0,τ3,τ4)〉 and output μ = 022. The matrix chosen
for this plot is provided in Eq. (A36). The rate is shown both as a
three-dimensional plot and as a contour plot at the base of the figure.

distinguishable with respect to the fourth photon. An example
coincidence landscape associated with this last scenario is
plotted in Fig. 2. The first two photons arrive simultaneously at
a fixed time, while the third and fourth photons are separately
delayed with respect to this pair. The point at the center of
the landscape τ3 = τ4 = 0 only depends on the permanent. To
calculate the coincidence rate along the line τ3 = 0, the line
τ4 = 0, or the line τ3 = τ4 requires the additional computation
of -type immanants. Any other point on the landscape
requires computing all immanants appearing in Eq. (16), as
in this case none of the coefficients are zero.

The final scenario is one where all four photons are
distinguishable with respect to each other. Calculating the
coincidence rate at a general point in this case requires the
entirety of Eq. (16).

We have calculated the coincidence rate for the input state
|211; 1123; τ 〉 and output event μ = 022 in terms of the three
immanants of the scattering matrix. Using this coincidence
expression we have shown that for this input and output pair
three regimes of distinguishability of the photons exist.

B. Rate transformation under permutation of photons

Now we turn to the problem of analyzing how the rate
for a fixed output event changes under the permutation of the
photons at the input. Figure 1(b) shows an example where the
photons at the interferometer input have been permuted with
respect to the photons shown in Fig. 1(a). The second and third
photons have been swapped so the second photon is now in the
second input and the third photon is in the first input. This input
state is represented by |211; 1213〉.

As discussed above, the action Pσ for σ ∈ S4 captures
permutations of the photons at the input of the interferometer.
Though S4 has 24 elements there are only twelve distinct
ways of placing four photons in the input ports with mode
occupations η = 211. This is due to the multiplicity of photons
in the first input port. The coincidence rates for any of these 12
distinct permutations have the same form as Eq. (16), except the
coefficients αλ

σ,σ ′ are different in each case. We now describe
how coefficients for one input permutation are related to the
coefficients for some other input permutation.

Under the action Pσ , the vector u transforms to �(σ )u,
while the rate matrix remains unaffected as it does not depend

on the input configuration. Some straightforward matrix alge-
bra results in the rate Cσ (τ ) for the permuted input in the form

Cσ (τ ) = (V u)†[V �(σ )†R(τ )�(σ )V †](V u). (18)

The interferometer vector is unmodified for any σ but the rate
matrix is rotated by V �(σ )†. The expression (16) remains
covariant. For any permutation of the input photons the rate
expression is obtained by mixing the coefficients αλ

σ,σ ′ linearly
into each other.

C. Rate transformation under permutation of modes

The rate also remains covariant under a permutation of the
modes. The example shown in Fig. 1(c) has its input modes
permuted with respect to the input modes of the example in
Fig. 1(a). In total, there are three possible ways of permuting
the modes, explicitly specified by the input mode-occupation
strings 211, 121, and 112. The action Qσ transforms between
these various possible inputs.

The rate for each of these inputs has the form of (16)
except for each input the scattering matrix T is different. The
matrix T is a matrix formed by choosing the appropriate rows
and columns of the interferometer matrix U . Therefore, it is
straightforward to calculate the rate for any permutation of the
modes once the form (16) is known.

III. HONG-OU-MANDEL INTERFERENCE

In this section we use our formalism to analyze the HOM
effect for sources that sometimes produce two photons. The
HOM effect is often used to demonstrate that photon sources
are nonclassical: classical fields interfering in a balanced beam
splitter have visibility less than half the visibility of two pho-
tons interfering similarly [31]. Here we calculate corrections
to the coincidence rate for the HOM effect when the sources
sometimes produce two photons. We show that expressing the
rate in terms of immanants makes it straightforward to calculate
features of the coincidence rate.

The HOM setup consists of two photon sources, a beam
splitter and two photon detectors. Moreover, the experimental-
ist is able to tune the relative distinguishability of the photons
created by the two photon sources. In the original HOM
experiment [4], the distinguishing degree of freedom was the
overlap of the photons in the temporal domain, but it can also be
the polarization, frequency, or some other degree of freedom.
The output fields of the photon sources are injected into the
two input ports of the beam splitter. The photon detectors
are coupled to the output ports of the beam splitter. They are
usually bucket detectors that distinguish between zero photons
and one or more photons. The output event of interest is the
detection of photons in both the output ports of the beam
splitter.

The photon sources in state-of-the-art experiments are
parametric down-conversion sources [7–12] which are non-
deterministic photon sources with a photon pair-production
probability we denote as p. These sources can simultaneously
produce two pairs with probability p2. These two possibilities
and corresponding output events are shown in Fig. 3.

When only one photon is produced in each input port η =
11,υ = 12 and the output event of interest is μ = 11,ξ = 12.
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FIG. 3. An interferometer (diamond) with two inputs (left edges)
and two outputs (right edges). The numbered and unnumbered circles
represent photons at the input and output ports. The inputs are (a)
|11; 12; τ 〉, and (b), (c), and (d) |22; 1122; τ 〉. The outputs are (a)
μ = 11,ξ = 12, (b) μ = 22,ξ = 1122, (c) μ = 31,ξ = 1112, and (d)
μ = 13,ξ = 1222.

This pair of events leads to the coincidence rate

(19)

where τ = (τ1,τ2) and for clarity we label both the coincidence
rate and the scattering matrix by υ = 12 and ξ = 12. When the
photons are indistinguishable (τ1 = τ2) then the rate

(20)

is equal to the modulus squared of the permanent.
When the sources produce two photons in each input port,

the input event is labeled by η = 22,υ = 1122. There are three
possible output events labeled by the pairs μ = 22,ξ = 1122;
μ = 31,ξ = 1112; and μ = 13,ξ = 1222, such that there is
at least one photon in each output mode (the others can be
postselected away). For all three of these output events the
coincidence rate has the form

(21)

As the first two input photons are in the first mode and the last
two input photons are in the second mode, τ ′ = (τ1,τ1,τ2,τ2).

The total coincidence rate is

Ctotal = pC12,12(τ ) + p2[C1122,1122(τ ′)

+ C1122,1112(τ ′) + C1122,1222(τ ′)]. (22)

Exact expressions for these rates are presented in Appendix B.
Figure 4 depicts the total coincidence rate as well as the rate

C12,12(τ ) as a function of τ2 for τ1 = 0. The presence of multi-
photon effects increases the coincidence rate, but this increase
depends on the distinguishability of the photons. Figure 4
shows that the increase is least when the photons are completely
indistinguishable and increases monotonically as the photons
become more distinguishable. For indistinguishable photons

0.8

0.6

0.4

0.2

420−2−4 τ2

C

hf

hc

FIG. 4. Coincidence rates with two different sources for a HOM
experiment using for a 25:75 beam splitter. The solid (red) line shows
the coincidence rate (19) for one photon in each input port. The dotted
(blue) line shows the coincidence rate (22) for up to two photons in
each input port, with p = 0.04. The rates are drawn as a function of
τ2 while τ1 = 0. The difference between the two rates at τ2 = 0 is hf

while the difference between the two rates at τ2 → ∞ is hc.

the difference in rates

(23)

is the sum of squared permanents. As the two pair of photons
become more distinguishable, the other immanants appear in
the coincidence rate and consequently the difference hc is
greater than the difference hf. The exact expression for hc is
provided in Appendix B.

We have shown that the shape of the HOM coincidence
rate for nondeterministic photon sources differs qualitatively
from the rate for perfect single-photon sources. We expect that
interference experiments with higher number of photons in
larger interferometers will yield similar qualitative differences
if the inputs are contaminated with multiple photons.

IV. RATES FOR ARBITRARY INPUT STATES

In this section, we show that for any passive interferometry
experiment, the coincidence rate can always be expressed in
the form of (3). In Sec. IV A we formally define our model of
passive interferometry experiments. In Sec. IV B we define the
action of the symmetric group on photonic states. With this
background established we are able to calculate coincidence
rates for any input and output in Sec. IV C.

A. Passive interferometry

We define multimode multiphoton states, the action of the
interferometer, and the behavior of photon-counting detectors.
Photonic states are defined using the monochromatic photonic
creation and annihilation operators, ai(ωk),a†

j (ωl), for modes
i,j and frequencies ωk,ωl , satisfying the canonical commuta-
tion relations

[ai(ωk),a†
j (ωl)] = δij δ(ωk − ωl). (24)
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Realistic photons are not monochromatic, but rather have a
frequency spectrum captured by a complex-valued function
φ(ω). A single photon in mode i has state

|1,τ 〉i := A
†
i (τ )|0〉 :=

∫
dωφ(ω)e−iωτ a

†
i (ω)|0〉, (25)

where Ai(τ ) is the creation operator of a photon that arrives at
the interferometer at time τ .

The state of n photons in m modes is specified using
the mode-occupation string, the photon-occupation string,
and the distinguishability vector as we did in previous sections.
The input mode occupations are specified by a string η of length
m, where ηi is the number of photons in mode i ∈ {1, . . . ,m}
and

∑
ηi = n. The photon occupations are specified by a string

υ of length n, where υi is the mode occupied by the ith photon
for i ∈ {1, . . . ,n}. The time of arrival of the photons at the
interferometer is stored in the length n vector τ .

Using η, υ, and τ we can define the state of n photons in m

modes as

|η; υ; τ 〉 := 1√
N

n∏
i=1

A†
υi

(τi)|0〉, (26)

where 1√
N is the normalization of this wave function that we

evaluate in the proof of Proposition 1 below.
The interferometer is described by an m × m matrix U . The

interferometer transforms the input creation operators to output
creation operators according to

a
†
i,in(ωj ) =

m∑
k=1

Uika
†
k,out(ωj ), (27)

where, in Uik , the first index i denotes the input mode and
the second index k denotes the output mode. Elsewhere in this
paper, for typographical reasons, we suppress the subscripts
in and out on the creation and annihilation operators as the
difference is clear from context.

We model detectors as photon number counters that output
the number of photons detected in a particular mode. For
simplicity of presentation we assume that all detectors are
identical, lossless at all frequencies, and independent of the
time of arrival of the photons. Much like the input mode-
occupation string, the number of photons detected in each
output mode are collected in an output mode-occupation string
μ, where μi is the number of photons detected in the ith
output mode and

∑
i μi = n. The measurement operator Mμ

is defined using the length n vector

ξ := (

μ1 times︷ ︸︸ ︷
1, . . . ,1 , . . . ,

μi times︷ ︸︸ ︷
i, . . . ,i , . . . ,

μm times︷ ︸︸ ︷
m, . . . ,m).

Then the measurement operator element

Mμ := 1

μ1!, · · · ,μn!

∫
dω1 · · · dωn|ϕ(ω1)|2 · · · |ϕ(ωn)|2

× a
†
ξ1

(ω1) · · · a†
ξn

(ωn)|0〉〈0|aξ1 (ω1) · · · aξn
(ωn),

(28)

where the ϕ(ωi) specify the spectral range of the detectors.
Usually, this spectral range is much broader than the spectral
width of the photonic wave function [8,32], and therefore

everywhere we make the assumption that ϕ(ωi)φ(ωi) = φ(ωi).
If the state |η; υ; τ 〉 is measured, the probability Pr(μ|η; υ; τ )
of outcome μ is

Pr(μ|η; υ; τ ) = 〈η; υ; τ |Mμ|η; υ; τ 〉. (29)

This completes our mathematical description of passive optical
interferometry.

B. Permutation of photons and modes

In this subsection we employ the symmetric group to for-
mally define the permutation of photons and modes. The action
that permutes photons is also used to define a representation
of the symmetric group. In the next subsection the rate matrix
is shown to carry this representation.

The symmetric group Sn is the group of all n! permutations
of n objects. The state of n photons (26), described by
the product of n bosonic creation operators, allows for the
definition of the actions of the symmetric group Sn on photonic
states. Given an element σ ∈ Sn, the action Pσ on an n-photon
state is defined as

Pσ |η; υ; τ 〉 := 1√
N

∏
i

A†
υσ (i)

(τi)|0〉

= |η; Pσ υ; τ 〉, (30)

where Pσυ is a reordering of the entries of υ. There are N =
n!/

∏
i ηi! distinct permutations of υ. We arbitrarily order and

collect these N permutations in the set

ϒ = {ῡ1, . . . ,ῡN }. (31)

The elements of the symmetric group transform between the
N states (31) with mode occupation η.

The action (30) naturally leads to an N -dimensional repre-
sentation of Sn. For the permutations σ ∈ Sn its representation
�(σ ) has entries

�ij (σ ) =
{

1, if Pσ ῡ i = ῡj ,

0, otherwise.
(32)

We also define Q, the action of the symmetric group on
photonic states that permutes modes. To describe all mode
permutations of m-mode states we require the symmetric group
Sm. Given an element σ ∈ Sm,

Qσ |η; υ; τ 〉 := 1√
N

∏
i

A
†
σ (υi )(τi)|0〉

= |Qση; Qσυ〉, (33)

where Qση reorders the entries of η and Qσυ maps υi to σ (υi).
The actions Pσ and Qσ were previously mentioned when

discussing the input states shown in Fig. 1. We have the
relationship

P(23)|211; 1123; τ 〉 = |211; P(23)1123; τ 〉
= |211; 1213; τ 〉,

where σ = (23) ∈ S4 because it is a system of four photons.
We also have the relationship

Q(12)|211; 1123; τ 〉 = |Q(12)211; Q(12)1123; τ 〉
= |121; 2213; τ 〉,

063802-8



PERMUTATIONAL SYMMETRIES FOR COINCIDENCE … PHYSICAL REVIEW A 97, 063802 (2018)

where σ ′ = (12) ∈ S3 because the example in Fig. 1 is a system
of three spatial modes.

C. Coincidence rates for arbitrary inputs

We now have all the necessary ingredients to prove that
coincidence rates in passive interferometry are of the form (3).
This is the content of the following proposition.

Proposition 1. Given an m-mode n-photon state |η,υ; τ 〉
and an interferometer described by the matrix U , then for the
output event μ, the coincidence rate is

C(τ ) := 〈η,υ; τ |U †MμU |η,υ; τ 〉
= u†R(τ )u. (34)

Proof. The action of the interferometer (27) on the state (26)
results in the state

U |η; υ; τ 〉 =
∑

υ ′∈{1,...,m}n

n∏
k=1

Uυkυ
′
k
|η′; υ ′; τ 〉, (35)

the superposition of all possible states with n photons. Here
we have suppressed the normalization factor from Eq. (26) but
calculate it shortly. In the sum above, the only states |η′; υ ′; τ 〉
that have a nonzero contribution to the expectation value

〈η,υ; τ |U †MμU |η,υ; τ 〉 (36)

are those for which η′ = μ. The states for which this condition
is true are collected in basis

B = {|μ; Pσ ξ ; τ 〉 : σ ∈ Sn}. (37)

This basis set has N = n!/
∏m

i=1 μi! elements, labeled by the
N permutations

ϒ = {ξ̄ 1
, . . . ,ξ̄

N } (38)

of ξ . Therefore, the coincidence rate

C(τ ) =
N∑

i,j=1

n∏
k=1

U ∗
υk ξ̄

i
k

〈μ; ξ̄
i
; τ |Mμ

n∏
k′=1

U
υk′ ξ̄ j

k′
|μ; ξ̄

j
; τ 〉.

(39)
Such a sum of products can equivalently be written as the
matrix product C(τ ) = u†R(τ )u, where the entries of u are

uk :=
n∏

i=1

Uυi ξ̄
k
i
, (40)

and

Rij (τ ) = 〈μ; ξ̄
i
; τ |Mμ|μ; ξ̄

j
; τ 〉. (41)

Employing definition (28) of Mμ and definition (26) of pho-
tonic states,

Rij (τ ) =
∫

dω1 · · · dωnrir
†
j , (42)

where

rk = 〈0|
n∏

i=1

Aξ̄k
i
(τi)

n∏
j=1

a
†
ξj

(ωj )|0〉. (43)

The elements of r can be simplified as follows. First note
that by using the definition of the creation operators (25) an

integral over the frequencies is obtained. This integral can be
calculated by defining for element rk the set

Ck := {σ ∈ Sn : Pσ ξ̄
k = ξ}. (44)

Assuming ξ 1 := ξ , the set C1 stabilizes ξ and is therefore a
subgroup of Sn. The sets {Ck} are the right cosets of Sn with
respect to C1. Then by using the commutation relations (24)
the integral over the frequencies reduces to the sum

rk =
∑
σ∈Ck

φ(ω1) · · · φ(ωn)eiω1τσ (1) · · · eiωnτσ (n) . (45)

Using this the entries of the rate matrix turn into

Rij (τ ) = 1

N
1

μ1!, · · · ,μn!

∫
dω1 · · · dωn|φ(ω1)|2 · · · |φ(ωn)|2

×
( ∑

σ ′∈Ci

eiω1τσ ′(1) · · · eiωnτσ ′(n)

)

×
( ∑

σ̃∈Cj

e−iω1τσ̃ (1) · · · e−iωnτσ̃ (n)

)
, (46)

where we have reintroduced the normalization factors from
Eq. (26) and Eq. (28). The normalization factor N is

N = |〈η,υ,τ |η,υ,τ 〉|2 = |〈0
∣∣∣∣ n∏

i=1

Aυi
(τi)

n∏
j=1

A†
υj

(τj )|0〉
∣∣∣∣2

.

(47)
This expression is similar to Eq. (43) and can be simplified
in the same way. Let C ′ be the subset of elements of Sn that
stabilize υ. Then,

N =
∣∣∣∣∣
∫

dω1 · · · dωn|φ(ω1)|2 · · · |φ(ωn)|2eiω1τ1 · · · eiωnτn

×
∑
σ∈C ′

[e−iω1τσ (1) · · · e−iωnτσ (n) ]

∣∣∣∣∣
2

. (48)

Hence, the coincidence rate (34) can be calculated from
Eqs. (40) and (46). �

Proposition 1 provides convenient expressions to calculate
the coincidence rate. The entries of the interferometer vector
can be calculated using Eq. (40), the entries of rate matrix
can be calculated using Eq. (46), and the total coincidence
rate can then be calculated using Eq. (3). The expressions in
Proposition 1 are amenable to execution by computer code.
MATHEMATICA code for these expressions, which was also used
to do all calculations in this work, can be found on GitHub [33].
Finally, note that the rate expression that is calculated is not
normalized. This is not a problem for predicting the results of
photonic interferometry experiments because, due to photon
losses, only the relative rates between different outcomes is
known and not the absolute value of any given outcome [7–12].

The factorization of the rate into a matrix product follows
from the linearity of the interferometer’s action (27) on
photonic states. The dependence of the entries of the rate
matrix on permutations arises due to swapping present in the
commutation relations (24). The specific form of the wave
function that we have assumed in Eq. (26) is not important,
as the same factorization of the rate happens for photons
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distinguished by (one or more) other nonpath degrees of
freedom.

The decomposition of the rate as a matrix product (3)
provides computational shortcuts for calculating coincidence
rates for repeated simulations of experiments in two cases. If
the interferometer parameters are fixed but the photon delays
vary across simulations, then the immanants do not change
and have to be computed only once whereas the coefficients
do change between computational runs. On the other hand, if
the photon delays are fixed but the interferometer parameters
vary across simulations, then only the immanants have to be
computed anew in each computational run.

D. Coincidence rates in terms of immanants

In this section, we show that the coincidence rates can be
expressed in terms of immanants and provide a procedure to do
so. First, we show that the rate matrix carries a representation
of the symmetric group, and hence can be block-diagonalized
using standard methods of the symmetric group representa-
tion theory [23]. Second, we provide a procedure to convert
the entries of the rotated interferometer vector into sums
of immanants. Then, Eq. (10) can be used to calculate the
coincidence rate.

We prove that the rate matrix (46) can be block-diagonalized
with the aid of the following proposition.

Proposition 2. The rate matrix carries the representation
(32); i.e., the rate matrix may be expressed as

R(τ ) =
∑
σ∈Sn

�σ (τ )�(σ ). (49)

Proof. First note that Eqs. (49) and (32) imply that

Rij (τ ) =
∑
σ∈Sn

{
�σ (τ ), if Pσ ξ̄

i = ξ̄
j
,

0, otherwise.
(50)

We show that Eq. (46) is equivalent to this expression. The
double sum in Eq. (46) has entries∫

dω1 · · · dωn|φ(ω1)|2 · · · |φ(ωn)|2

×eiω1(τσ ′(1)−τσ̃ (1)) · · · eiωn(τσ ′(n)−τσ̃ (n)) (51)

=
∫

dω1 · · · dωn|φ(ω1)|2 · · · |φ(ωn)|2

×eiω1(τσ̃−1σ ′(1)−τ1) · · · eiωn(τσ̃−1σ ′(n)−τn), (52)

where the equality is obtained by a suitable relabeling of the
{ωi}. Note that from the definitions of σ ′ ∈ Ci and σ̃ ∈ Cj it

follows that (Pσ̃ )−1Pσ ′ ξ̄
i = ξ̄

j
. Hence, if we set σ = σ̃−1σ ′

in Eq. (52) then Eq. (50) is satisfied. Explicitly, by comparing
Eq. (46) and Eq. (50), it is clear that

�σ̃−1σ ′(τ ) =
∫

dω1 · · · dωn|φ(ω1)|2 · · · |φ(ωn)|2

× (eiω1τσ ′(1) · · · eiωnτσ ′(n) )(e−iω1τσ̃ (1) · · · e−iωnτσ̃ (n) ).

(53)

�
To block-diagonalize the rate matrix requires the calcula-

tions of the basis V referred to in Eq. (10). This basis can be

obtained using a variety of methods, one of which is provided in
Chap. 4 of Ref. [23]. An example application of this method is
presented in Appendix A and an implementation can be found
in our reference code [33].

Now, we provide a procedure to express the entries of the
rotated interferometer vector V u as sums of immanants of
the scattering matrix. As discussed in Sec. II A, the standard
representation � and the space Hμ can be block-diagonalized.
Young tableaus, obtained by filling Young diagrams with
positive integers, provide information about the size and multi-
plicity of the blocks that occur in these block diagonalizations.
The standard representation � block-diagonalizes as

� =
⊕
λn

pλλ, (54)

where the sum is over all partitions of n and pλ is the
multiplicity of the irrep λ. A standard Young tableau is an
n-box Young diagram filled with {1, . . . ,n} such that numbers
strictly increase across rows and columns. The dimension d

of irrep λ is the number of standard Young tableaus of λ.
A semistandard Young tableau is an n-box Young diagram
filled by n, possibly repeating, positive integers such that the
numbers strictly increase across columns and weakly across
rows. The multiplicity pλ is the number of semistandard
Young tableaus formed using Young diagram λ and the string
ξ . This information about the decomposition of � can be
useful for determining the size and number of blocks in the
decomposition of the rate matrix (49).

The space Hμ block-diagonalizes as

Hμ =
⊕
λn

pλHλ, (55)

where the sum is over all partitions of n and pλ is the multi-
plicity of the the subspace Hλ, which is determined as above.
The subspace Hλ is spanned by up to d distinct immanants of
λ type, which will happen if there is no multiplicity of photons
in the input or output modes. If there are multiple photons in
any of the input or output modes, then the number of distinct
immanants is reduced, because the number of distinct states
that can be obtained by permuting the photons is reduced. The
rule for determining the actual number of immanants of certain
type λ is rather simple. Count the number of semistandard
Young tableaus of λ, once using input photon-occupation string
υ and once using the output photon-occupation string μ: the
minimum of these two counts is the number of distinct im-
manants of the type λ. Let this set of distinct immanants be Iλ.

Now, we discuss how to express the entries of the interfer-
ometer vector in terms of immanants. Recall that Hμ reduces
in the block-diagonal basis V . Therefore, V u is also reduced
and has blocks corresponding to the irreps of Sn. This means
that the entries of V u can be linearly transformed to express
them in terms of immanants. Explicitly, suppose the element
(V u)i is associated with the irrep λ. Then, the element (V u)i
is a vector in the space Hλ, and can be expressed in terms of
the elements of the set Iλ. In this way, V u and the coincidence
rate (10) can be expressed in terms of immanants.

We finish this section with a short discussion on how to
calculate coincidence rates for input states related by the
permutation of either photons or modes. The technical results
have already been proved in Secs. II B and II C. If for some
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input state the rate matrix and interferometer vector have
been calculated, then for any other input related to the first
by a permutation of photons the coincidence rate can be
calculated using Eq. (18). If the new input is related by a
permutation of modes, the the rate matrix remains the same
but the interferometer vector has to be calculated anew with
the new scattering matrix. This completes our discussion on
how to calculate coincidence rates for any input and output
configuration of photons.

V. CONCLUSION

We have developed a theory of passive optical interfer-
ometry that relates the coincidence rates at the output of an
interferometer with the permutational symmetries of the input
photons. The permutational symmetry of the input photons can
be controlled by varying their distinguishability, which in our
case is done by tuning the time of arrival of the photons at
the interferometer. Our results are obtained by exploiting the
representation theory of the symmetric group.

The coincidence rates at the output of the interferometer
are expressed in terms of the immanants of the scattering
matrix, where the relative weights of the immanants depend
on the distinguishability of the input photons. If any exchange
symmetries of the input photons are forbidden because of the
multiplicity of photons in input ports then immanants with
those exchange symmetries do not appear in the coincidence
rate expressions. For inputs related by a permutation their rates
are correspondingly related by a simple linear transformation.

As a simple example of the applicability of our formalism
we presented a study of the HOM experiment with photon
sources that sometimes output two photons. Though for this
system direct computation of the rates is straightforward, our
theory can be used to infer without any computation the
qualitative changes to the coincidence rates due to multiple
input photons. Such qualitative analysis can also be applied to
larger interference experiments.
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APPENDIX A: FOUR PHOTONS IN TWO MODES

In this appendix we fully work out the details of the
examples presented in Sec. II. We provide explicit expressions
for the interferometer vector and the rate matrix. We use class
operator methods to find the basis V in which the rate matrix
is block-diagonal and the entries of the interferometer matrix
are the immanants of the scattering matrix.

The input state,

|211; 1123〉 = A
†
1(τ1)A†

1(τ2)A†
2(τ3)A†

3(τ4)|0〉, (A1)

transforms under the action of the interferometer to

U |211; 1123〉 = [U11A
†
1(τ1) + U12A

†
2(τ1) + U13A

†
3(τ1)]

× [U11A
†
1(τ2) + U12A

†
2(τ2) + U13A

†
3(τ2)]

× [U21A
†
1(τ3) + U22A

†
2(τ3) + U23A

†
3(τ3)]

× [U31A
†
1(τ4) + U32A

†
2(τ4) + U33A

†
3(τ4)]|0〉.

(A2)

We have ignored the normalization factor in these expressions
for simplicity. We are interested in the output event μ = 022.
Of the 81 terms in the expansion of (A2), only six correspond to
two photons in each of the second and third modes, coinciding
with the six permutations of ξ = 2233. Only these six terms
give a nonzero contribution to the rate (29). The amplitude of
these six terms is w†|0〉u, where the interferometer vector

u =

⎛
⎜⎜⎜⎜⎜⎝

U12U12U23U33

U12U13U22U33

U12U13U23U32

U13U12U22U33

U13U12U23U32

U13U13U22U32

⎞
⎟⎟⎟⎟⎟⎠, (A3)

and vector

w =

⎛
⎜⎜⎜⎜⎜⎝

A2(τ1)A2(τ2)A3(τ3)A3(τ4)
A2(τ1)A3(τ2)A2(τ3)A3(τ4)
A2(τ1)A3(τ2)A3(τ3)A2(τ4)
A3(τ1)A2(τ2)A2(τ3)A3(τ4)
A3(τ1)A2(τ2)A3(τ3)A2(τ4)
A3(τ1)A3(τ2)A2(τ3)A2(τ4)

⎞
⎟⎟⎟⎟⎟⎠. (A4)

Employing the measurement operator M022 for detecting two
photons in each mode the rate

C(τ ) = 〈221; 1123|U †M022U |221; 1123〉
= u†〈0|wM022w

†|0〉u. (A5)

The 6 × 6 matrix

R(τ ) := 〈0|wM022w
†|0〉 (A6)

is the rate matrix. This expression is equivalent to the inter-
mediate expression (42) of the rate matrix in Proposition 1.
The rate matrix can be calculated from this expression using
tedious calculations. We use the simplified expression (46) to
calculate the rate matrix. First we note that the string ξ = 2233
has permutations

ϒ = {2233,2323,2332,3223,3232,3322}. (A7)

Using this, we can find the cosets of ξ = 2233. The
string ξ = 2233 is stabilized by the S4 subgroup C1 =
{e,(12),(34),(12,34)}: for instance P12,342233 = 2233. This
subgroup has right cosets

C1 = {e,(12),(34),(12,34)},
C2 = {(23),(132),(234),(1342)},
C3 = {(24),(142),(243),(1432)},
C4 = {(13),(123),(134),(1234)},
C5 = {(14),(124),(143),(1243)},
C6 = {(1324),(1423),(13,24),(14,23)}. (A8)

By definition (44), the elements of coset Ck map ξ̄
k

to ξ = ξ̄
1
:

for instance (23) ∈ C2 acts as P232323 = 2233.
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To calculate an explicit expression for the rate matrix we assume that all photons have an identical Gaussian spectrum,

φi(ω) = 1

(πσ 2)1/4
exp

(
− (ω − ω0)2

2σ 2

)
∀i ∈ {1, . . . ,n}. (A9)

For modeling a real experiment, the rates can be calculated using experimentally measured spectrums of the input photons. Using
this Gaussian spectrum and employing the expression (46) we find that the rate matrix is

R(τ ) = (R̃1 R̃2 R̃3), (A10)

where

R̃1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�e + �(12) + �(12,34) + �(34) �(132) + �(1342) + �(23) + �(234)

�(123) + �(1243) + �(23) + �(243) �e + �(13) + �(13,24) + �(24)

�(1234) + �(124) + �(234) + �(24) �(1324) + �(134) + �(243) + �(34)

�(13) + �(132) + �(143) + �(1432) �(12) + �(123) + �(142) + �(1423)

�(134) + �(1342) + �(14) + �(142) �(12,34) + �(1234) + �(14,23) + �(1432)

�(13,24) + �(1324) + �(14,23) + �(1423) �(124) + �(1243) + �(14) + �(143)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A11)

R̃2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(142) + �(1432) + �(24) + �(243) �(123) + �(1234) + �(13) + �(134)

�(1423) + �(143) + �(234) + �(34) �(12) + �(124) + �(132) + �(1324)

�e + �(14) + �(14,23) + �(23) �(12,34) + �(1243) + �(13,24) + �(1342)

�(12,34) + �(1243) + �(13,24) + �(1342) �e + �(14) + �(14,23) + �(23)

�(12) + �(124) + �(132) + �(1324) �(1423) + �(143) + �(234) + �(34)

�(123) + �(1234) + �(13) + �(134) �(142) + �(1432) + �(24) + �(243)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A12)

R̃3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(124) + �(1243) + �(14) + �(143) �(13,24) + �(1324) + �(14,23) + �(1423)

�(12,34) + �(1234) + �(14,23) + �(1432) �(134) + �(1342) + �(14) + �(142)

�(12) + �(123) + �(142) + �(1423) �(13) + �(132) + �(143) + �(1432)

�(1324) + �(134) + �(243) + �(34) �(1234) + �(124) + �(234) + �(24)

�e + �(13) + �(13,24) + �(24) �(123) + �(1243) + �(23) + �(243)

�(132) + �(1342) + �(23) + �(234) �e + �(12) + �(12,34) + �(34)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A13)

and

�e = 1, �(12) = e−σ 2(τ1−τ2)2
,

�(13) = e−σ 2(τ1−τ3)2
, �(14) = e−σ 2(τ1−τ4)2

,

�(23) = e−σ 2(τ2−τ3)2
, �(24) = e−σ 2(τ2−τ4)2

,

�(34) = e−σ 2(τ3−τ4)2
, �(123) = e−σ 2(τ 2

1 +τ 2
2 +τ 2

3 −τ1τ2−τ1τ3−τ2τ3),

�(124) = e−σ 2(τ 2
1 +τ 2

2 +τ 2
4 −τ1τ2−τ1τ4−τ2τ4), �(132) = �123,

�(134) = e−σ 2(τ 2
1 +τ 2

3 +τ 2
4 −τ1τ3−τ1τ4−τ3τ4), �(142) = �124,

�(143) = �134, �(234) = e−σ 2(τ 2
2 +τ 2

3 +τ 2
4 −τ2τ3−τ2τ4−τ3τ4),

�(243) = �234, �(1234) = e−σ 2(τ 2
1 +τ 2

2 +τ 2
3 +τ 2

4 −τ1τ2−τ1τ4−τ2τ3−τ3τ4),

�(1243) = e−σ 2(τ 2
1 +τ 2

2 +τ 2
3 +τ 2

4 −τ1τ2−τ1τ3−τ2τ4−τ3τ4), �(1324) = e−σ 2(τ 2
1 +τ 2

2 +τ 2
3 +τ 2

4 −τ1τ3−τ1τ4−τ2τ3−τ2τ4),

�(1342) = �1243, �(1423) = �1324,

�(1432) = �1234, �(12,34) = e−σ 2[(τ1−τ2)2+(τ3−τ4)2],

�(13,24) = e−σ 2[(τ1−τ3)2+(τ2−τ4)2], �(14,23) = e−σ 2[(τ1−τ4)2+(τ2−τ3)2]. (A14)

This compact form of the rate matrix in terms of �σ is provided because we also want to verify that the rate matrix carries a
representation of the symmetric group. Using Eq. (A7) we find that the representation � has basis

B = {|022; 2233; τ 〉,|022; 2323; τ 〉,|022; 2332; τ 〉,|022; 3223; τ 〉,|022; 3232; τ 〉,|022; 3322; τ 〉}. (A15)
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In this basis, using Eq. (32), the representations of the elements of S4 are

�e =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠, �(12) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠, �(13) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�(14) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �(23) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠, �(24) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�(34) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠, �(123) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �(124) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�(132) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠, �(134) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �(142) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�(143) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �(234) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠, �(243) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�(1234) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �(1243) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �(1324) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�(1342) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠, �(1423) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �(1432) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�(12,34) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠, �(13,24) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �(14,23) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (A16)

Using these representations it is easy to verify via inspection
that R(τ ) = ∑

σ∈S4
�σ (τ )�σ , which means the rate matrix

does carry the representation � of S4. Therefore, in order to
block-diagonalize the rate matrix we have to reduce � to the
irreps of S4.

First we discuss which irreps do occur in this reduction. The
irreps of Sn are labeled by n-box Young diagrams. The irreps of

S4 are labeled by the Young diagrams , and
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. The rule for determining which irreps do occur is to count the

number of semistandard Young tableaus for each irrep using
the string ξ = 2233. For each of the first three Young diagrams
there is only one possible semistandard Young tableau. These
are

(A17)

For the last two Young diagrams, and , there is no

possible way to construct a valid semistandard Young tableau.
Therefore, the corresponding irreps do not occur in the decom-
position. � decomposes as

(A18)

This can also be verified using orthogonality of characters
[23]. This decomposition is also identical to the decompo-
sition of the tensor product (2,0,0) ⊗ (2,0,0) of the su(4)
irrep; the irrep (2,0,0) is appropriate to describe the possible
states of two indistinguishable photons, as required by our
detection scheme where output photons in a given output port
are indistinguishable [23]. The Young tableau manipulations
of Eq. (A17) are simply an application of the well-known
Littlewood-Richardson rule for decomposing tensor products
of su(n) irreps. The dimension of each irrep λ is the number
of standard Young tableaux that can be constructed from the
Young diagramλ. For the irreps that occur in (A18) the standard
Young tableaux are

(A19)

Based on these constructions we can infer that the irrep
is one-dimensional, the irrep is three-dimensional, and the

irrep is two-dimensional. The sum of these dimensions is
six, the same as the size of the rate matrix and the dimension
of �.

We now find the basis which reduces � to block-diagonal
form. We use the method of class operators. The basis vectors
for an irrep are the linear combinations of the eigenvectors of
the complete set of commuting operators (CSCO). A CSCO
of symmetric group Sn is formed from the set {D(2)

k }n
k=2 of

two-cycle class operators [23],

D
(2)
k =

∑
σ (2)∈Sk

σ (2), (A20)

of the canonical subgroup chain Sn ⊃ Sn−1 · · · ⊃ S2. Using
the representations of the two cycles we can construct the two-
cycle class operators,

D2(2) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠,

D3(2) =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0
1 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 1 0 1 1
0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎠,

D4(2) =

⎛
⎜⎜⎜⎜⎜⎝

2 1 1 1 1 0
1 2 1 1 0 1
1 1 2 0 1 1
1 1 0 2 1 1
1 0 1 1 2 1
0 1 1 1 1 2

⎞
⎟⎟⎟⎟⎟⎠. (A21)

Next, the eigenbasis V that simultaneously diagonalizes the
operators {D(2)

k }n
k=2 is found. The eigenbasis can be found

using numerical simultaneous diagonalization algorithms [34].
However, for small n, a simpler procedure is as follows. The
two-cycle class operators have eigenvalues

κ
(2)
λ = n

2
+ 1

2

m∑
�=1

λ�(λ� − 2�), (A22)

where each eigenvalue is labeled by a Young diagram λ and λ�

is the number of boxes on the �th row of the Young diagram
λ. The chains for S4 are

(A23)

where the eigenvalue associated with each Young diagram via
Eq. (A22) is given below it. Each of the chains of Young
diagrams is associated with one simultaneous eigenvector of
{D(2)

k }n
k=2. For instance, the first eigenvector has eigenvalue 6

for D
(2)
4 , eigenvalue 3 for D

(2)
3 , and eigenvalue 1 for D

(2)
2 .

A simple way of finding the eigenbasis is to use the operator

D(2) =
4∑

k=2

αiD
(2)
k , (A24)

where the constants αi are chosen so that D(2) has no repeated
eigenvalues. For n � 6 the choice of αi = i + 7 works. With
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this choice

D(2) =

⎛
⎜⎜⎜⎜⎜⎝

41 21 11 21 11 0
21 32 11 30 0 11
11 11 32 0 30 21
21 30 0 32 11 11
11 0 30 11 32 21
0 11 21 11 21 41

⎞
⎟⎟⎟⎟⎟⎠. (A25)

The eigenbasis of D(2) is

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

0 − 1
2 − 1

2
1
2

1
2 0

− 1√
3

1
2
√

3
− 1

2
√

3
1

2
√

3
− 1

2
√

3
1√
3

1√
6

1√
6

− 1√
6

1√
6

− 1√
6

− 1√
6

0 1
2 − 1

2 − 1
2

1
2 0

1√
3

− 1
2
√

3
− 1

2
√

3
− 1

2
√

3
− 1

2
√

3
1√
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A26)

where the vectors (rows) have been ordered to match the ordering of the irreps in (A18). In this basis the rate matrix V R(τ )V T

is block-diagonal.
We now analyze the effects of the basis change V on the interferometer matrix u. Using Eqs. (A3) and (A26), we find

V u = 1√
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U23U33U
2
12 + 2U13U23U32U12 + 2U13U22U33U12 + U 2

13U22U32

0

−√
2U23U33U

2
12 − √

2U13U23U32U12 + √
2U13U22U33U12 + √

2U 2
13U22U32

−U23U33U
2
12 + 2U13U23U32U12 − 2U13U22U33U12 + U 2

13U22U32

0√
2U23U33U

2
12 − √

2U13U23U32U12 − √
2U13U22U33U12 + √

2U 2
13U22U32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A27)

The entries of V u can be expressed as immanants. Im-
manants are defined using the characters of the symmetric
group. For S4 the relevant characters are provided in Table I.

The immanants are functions of the scattering matrix T

or the matrix found by permuting the rows of T . Using the
definition of the scattering matrix (11), where υ = 1123 and
ξ = 2233, the matrix

T =

⎛
⎜⎝

U12 U12 U13 U13

U12 U12 U13 U13

U22 U22 U23 U23

U32 U32 U33 U33

⎞
⎟⎠. (A28)

Using Eq. (12) and Table I, we find that this matrix has
associated immanants

TABLE I. Characters for three irreps of S4. Each row provides
the character of one irrep, where each column entry is the character
of one class of S4.

Irrep λ/Character χλ( ) χλ( ) χλ( ) χλ( ) χλ( )

1 1 1 1 1

−1 0 −1 1 3

0 −1 2 0 2

= 4U23U33U
2
12 + 8U13U23U32U12

+ 8U13U22U33U12 + 4U 2
13U22U32, (A29)

= 4U 2
12U23U33 − 4U 2

13U22U32, (A30)

= 4U12U13U22U33 − 4U12U13U23U32, (A31)

= 4U23U33U
2
12 − 4U13U23U32U12

− 4U13U22U33U12 + 4U 2
13U22U32, (A32)

where we remind the reader that T(13) is the matrix T with
its first and third rows permuted. This is the complete list of
distinct immanants of types , and that can be
formed from Tσ for all σ ∈ S4.

To transform the entries of V u into immanants, we require
the help of Eq. (A19) which specifies the sizes of each block
of the rotated interferometer vector V u. We note that the
first block associated with irrep is of size 1. The first

entry in Eq. (A27) must then be the permanent imm T

of the scattering matrix up to a constant. We can verify that
this is so. The next block, associated with irrep , is
three-dimensional. We should able to express the second to fifth

entries of Eq. (A27) in terms of the two immanants imm T
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and imm T(13). The simple rotation,

(A33)

is indeed equal to the second to fifth entries of Eq. (A27).
The same procedure can be followed for the final two-
dimensional block associated with the irrep . Hence,
in the basis V the entries of the interferometer vector,

(A34)

are transformed to immanants.
Finally, using the rate expression (10), we find that

C(τ ) = 1
96 (�e + �(12) + �(123) + �(12,34) + �(1234)

+ �(124) + �(1243) + �(13) + �(132)

+ �(13,24) + �(1324) + �(134) + �(1342) + �(14)

+ �(142) + �(14,23) + �(1423)

+ �(143) + �(1432) + �(23) + �(234) + �(24)

+ �(243) + �(34))

+ 1
32 (�e + �(12) + �(12,34) − �(13,24) − �(1324)

− �(14,23) − �(1423) + �(34))| T |2

+ 1
96 (2�e + 2�(12) + �(123) − 2�(12,34)

− �(1234) + �(124) − �(1243) + �(13) + �(132) − �(134)

− �(1342) + �(14) + �(142) − �(143) − �(1432) + �(23)

− �(234) + �(24) − �(243) − 2�(34))| T(13)|2

+ 1
96 (�(123) − �(1234) − �(124) + �(1243) + �(13)

+ �(132) − �(134) − �(1342) − �(14)

− �(142) + �(143) + �(1432) + �(23) − �(234)

− �(24) + �(243))( T )( T(13))
∗

+ 1
96 (�(123) + �(1234) − �(124) − �(1243) + �(13)

+ �(132) + �(134) + �(1342) − �(14)

− �(142) − �(143) − �(1432) + �(23) + �(234) − �(24)

− �(243))( T(13))( T )∗

+ 1
96 (2�e + 2�(12) − �(123) + 2�(12,34) − �(1234)

− �(124) − �(1243) − �(13) − �(132) + 2�(13,24)

+ 2�(1324) − �(134) − �(1342) − �(14) − �(142)

+ 2�(14,23) + 2�(1423) − �(143) − �(1432) − �(23)

− �(234) − �(24) − �(243) + 2�(34))

(A35)

The coincidence landscape shown in Fig. 2 is plotted using the interferometer matrix

U =
⎛
⎝ 0.232231 + 0.437219i −0.271046 + 0.371938i 0.168757 + 0.717374i

−0.430781 + 0.406851i −0.447972 − 0.0160114i 0.539331 − 0.396341i

−0.170262 − 0.612224i −0.476765 + 0.599963i −0.0840731 − 0.043172i

⎞
⎠. (A36)

APPENDIX B: HONG-OU-MANDEL CORRECTIONS

In this section we present the corrected rate for the HOM ex-
pression. For input state |11; 12; τ 〉 and measurement operator
M11, the scattering matrix

T 12,12 =
(

U11 U12

U21 U22

)
. (B1)

This matrix has two nontrivial immanants: the permanent,

(B2)

and the determinant,

(B3)

The coincidence rate is given by

(B4)

where

�e =
∫

dω1dω2|φ(ω1)|2|φ(ω2)|2, (B5)

�(12) = ∫
dω1dω2|φ(ω1)|2|φ(ω2)|2eiω1(τ1−τ2)eiω2(τ2−τ1). (B6)

For input state |22; 1122; τ 〉 and measurement operatorM22,
the scattering matrix

T 1122,1122 =

⎛
⎜⎝

U11 U11 U12 U12

U11 U11 U12 U12

U21 U21 U22 U22

U21 U21 U22 U22

⎞
⎟⎠. (B7)

This matrix has three distinct immanants of the , ,

types,

T 1122,1122 = 4U 2
12U

2
21 + 16U11U12U22U21

+ 4U 2
11U

2
22, (B8)
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T 1122,1122 = 4U 2
11U

2
22 − 4U 2

12U
2
21, (B9)

T 1122,1122 = 4U 2
12U

2
21 − 8U11U12U22U21 + 4U 2

11U
2
22.

(B10)

The coincidence rate is given by

C1122,1122(τ )

= 1
96 (�e + �(12) + �(123) + �(12,34) + �(1234)

+ �(124) + �(1243) + �(13) + �(132) + �(13,24)

+ �(1324) + �(134) + �(1342) + �(14)

+ �(142) + �(14,23) + �(1423) + �(143)

+ �(1432) + �(23) + �(234) + �(24) + �(243)

+ �(34))
∣∣ 1122,1122∣∣2 + 1

32 (�e + �(12)

+ �(12,34) − �(13,24) − �(1324) − �(14,23)

− �(1423) + �(34))
∣∣ 1122,1122∣∣2 + 1

96 (2�e

+ 2�(12) − �(123) + 2�(12,34) − �(1234) − �(124)

− �(1243) − �(13) − �(132) + 2�(13,24)

+ 2�(1324) − �(134) − �(1342) − �(14) − �(142)

+ 2�(14,23) + 2�(1423) − �(143) − �(1432)

− �(23) − �(234) − �(24) − �(243) + 2�(34))

× ∣∣ T 1122,1122
∣∣2

, (B11)

where

�σ =
∫

dω1dω2dω3dω4|φ(ω1)φ(ω2)φ(ω3)φ(ω4)|2

×Pσ e−i(ω1τ1+ω2τ2+ω3τ3+ω4τ4). (B12)

For input state |22; 1122; τ 〉 and measurement operatorM31,
the scattering matrix

T 1122,1112 =

⎛
⎜⎝

U11 U11 U11 U12

U11 U11 U11 U12

U21 U21 U21 U22

U21 U21 U21 U22

⎞
⎟⎠. (B13)

This matrix has two distinct immanants of the
types,

T 1122,1112 = 12U21U22U
2
11 + 12U12U

2
21U11,

(B14)

T 1122,1112 = 4U 2
11U21U22 − 4U11U12U

2
21. (B15)

The coincidence rate is given by

C1122,1112(τ ) = 1
144 (�e + �(12) + �(123) + �(12,34) + �(1234)

+ �(124) + �(1243) + �(13) + �(132)

+ �(13,24) + �(1324) + �(134) + �(1342)

+ �(14) + �(142) + �(14,23) + �(1423)

+ �(143) + �(1432) + �(23) + �(234) + �(24)

+ �(243) + �(34))
∣∣ T 1122,1112

∣∣2

+ 1
16 (�e + �(12) + �(12,34) − �(13,24)

− �(1324) − �(14,23) − �(1423)

+ �(34))
∣∣ T 1122,1112

∣∣2
,

(B16)

where �σ is defined in Eq. (B12).
For input state |22; 1122; τ 〉 and measurement operatorM13,

the scattering matrix

T 1122,1222 =

⎛
⎜⎜⎜⎝

U11 U12 U12 U12

U11 U12 U12 U12

U21 U22 U22 U22

U21 U22 U22 U22

⎞
⎟⎟⎟⎠. (B17)

This matrix has two distinct immanants of the
types,

T 1122,1222 = 12U21U22U
2
12 + 12U11U

2
22U12, (B18)

T 1122,1222 = 4U11U12U
2
22 − 4U 2

12U21U22. (B19)

The coincidence rate is given by

C1122,1222(τ ) = 1
144 (�e + �(12) + �(123) + �(12,34) + �(1234)

+ �(124) + �(1243) + �(13) + �(132)

+ �(13,24) + �(1324) + �(134) + �(1342)

+ �(14) + �(142) + �(14,23) + �(1423)

+ �(143) + �(1432) + �(23) + �(234) + �(24)

+ �(243) + �(34))
∣∣imm T 1122,1222

∣∣2

+ 1
16 (�e + �(12) + �(12,34) − �(13,24)

− �(1324) − �(14,23) − �(1423)

+ �(34))
∣∣ T 1122,1222

∣∣2
, (B20)

where �σ is defined in Eq. (B12).
The two pairs of photons are completely distinguishable in

the limit τ2 − τ2 → ∞. In this case, the difference

hc = p2

384

(
4
∣∣ T 1122,1122

∣∣2 + 8
∣∣ T 1122,1122

∣∣2

+ (3 + 2
√

2)
∣∣ T 1122,1122

∣∣2

+ 4
∣∣ T 1122,1112

∣∣2

+ 4(3 + 2
√

2)
∣∣ T 1122,1112

∣∣2

+ 4
∣∣ T 1122,1222

∣∣2

+ 4(3 + 2
√

2)
∣∣ T 1122,1222

∣∣2)
. (B21)
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