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Inequivalent classes of closed three-level systems
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We show here that theL andV configurations of three-level atomic systems, while they have recently been
shown to be equivalent for many important physical quantities when driven with classical fields@M. B. Plenio,
Phys. Rev. A62, 015802~2000!#, are no longer equivalent when coupled via a quantum field. We analyze the
physical origin of such behavior and show how the equivalence between these two configurations emerges in
the semiclassical limit.
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Atomic coherence is essential to properly understand
response of an atomic three-level system to laser radia
~for a recent review see Ref.@1#!. A large amount of researc
has thus been devoted to exploring many effects that rely
quantum interference in atomic systems: examples incl
dark states@2#, narrow spectral lines@3#, pulse matching@4#,
and antiintuitive excitation@5#. These nonclassical feature
have an enormous variety of interesting and nontrivial c
sequences, including electromagnetically induced trans
ency@6#, lasing without inversion@7#, state-selective molecu
lar excitation@8#, and demonstrations of slow light@9# and
fast light @10#, to mention only a few examples.

Roughly speaking, one can identify dark states as a
concept in the description of these coherent phenomen
dark state is a specific coherent superposition resulting
destructive quantum interference, in a completely decoup
state. So, the atom prepared in a dark state cannot be ex
and cannot leave the dark state.

When we limit the discussion to the case in which on
two transitions are allowed between levels, there are th
distinct level configurations known asJ, L, andV @11#. It is
well known that dark states cannot be formed in theJ con-
figuration: this is the reason why quantum interference d
not play any role for this system and it is tacitly consider
inequivalent toL andV configurations.

Usually the phenomenon of spontaneous emission~which
is the main damping contribution! plays a destructive role in
the creation of this coherence. Note, however, that there h
been several proposals in which coherence induced from
spontaneous emission itself is used for the preparation o
atom @12#.

One can find, scattered in the literature, statements a
similarities betweenL- andV-type systems in some limits o
under different decaying rates between levels@13#. The re-
cent and intriguing paper by Plenio@14# sheds light on these
similarities, pointing out a more general equivalence
tween these systems. The central result is that both sche
share a common structure and, as a consequence, exhib
same physical behavior for many important quantities.
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general, to derive this equivalence, one writes the ma
equations of both systems and, by a smart change of v
ables, shows that these equations are identical.

Although such equivalence betweenL andV schemes is
valid for many purposes, it is always deduced in a regi
where the fields are essentially classical. It remains to inv
tigate the extent to which these systems remain equiva
when they interact with quantum fields. It is precisely t
objective of this paper to answer this question.

We begin by considering a collection ofA identical three-
level atoms confined to a small volume with linear dime
sions less than the relevant wavelengths of light. The ato
energy levels are always ordered accordinglyE1<E2<E3.
The collective atomic operators are denoted bySi j ~the Latin
indices run from 1 to 3! and satisfy the commutation rela
tions

@Si j ,Skl#5d jkSil 2d i l Sk j , ~1!

distinctive of the algebra u~3!. For concreteness, we sha
treat only fully symmetrical states; then,Si j is conveniently
realized, in the second quantization formalism, by boson
erators

Si j 5bi
†bj , ~2!

which transfer excitations from levelj to level i ( iÞ j ). The
eigenvalue ofSii is just the population of leveli.

The atomic system interacts with a single quantum fi
of frequencyv described by the usual creation and destr
tion operatorsa† anda, respectively~the case of two-mode
fields can be treated much in the same way!. The general
form of the Hamiltonian for our systems isH5H01H int ,
where the free Hamiltonian is~in units \51)

H05(
i 51

3

EiSii 1va†a, ~3!

and the interaction Hamiltonian depends on the level c
figurations,
©2003 The American Physical Society01-1
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H int
(L)5g31~X311X31

† !1g32~X321X32
† !,

H int
(V)5g31~X311X31

† !1g21~X211X21
† !, ~4!

which have been written in terms of operators in the
called su~3! deformed algebra@15#

X315aS31, X215aS21, X325aS32, ~5!

and Xi j 5(Xji )
†. These first-order transition operators d

scribe allowed~direct! transitions between the correspondi
atomic levels, accompanied by the appropriate emission
absorption of a photon.

Note that a pair of levels~lower levels, in the case ofL,
upper levels, in the case ofV) must be nearly degenerate
order to interact efficiently with a single field mode. In th
case of degenerate levels for theL system, we writeE1
5E2[E2 , E3[E1 , and rotate the operatorsbj , which en-
ter in the representation of atomic operators Eq.~2!, to

S b1

b2
D 5S cosa 2sina

sina cosa D S c1

c2
D , b35c3 , ~6!

where c1 and c2 are new destruction operators and tana

5g32/g31. In terms of new atomic operatorsS̃jk5cj
†ck the

transformed Hamiltonian becomes

H̃ (L)5h(L)1E2S̃22,

h(L)5va†a1E1S̃331E2S̃111gL~aS̃311a†S̃13!, ~7!

wheregL5g31cosa1g32sina.
The dynamics of the uncoupled levelu2̃&52sinau1&

1cosau2& is completely independent of the field variabl
and is governed by the sub-HamiltonianE2S̃22 of H̃ (L). The
levelsu1̃& andu3̃& are coupled via an effective coupling co
stantgL .

The same procedure can be repeated forH (V), rotating
this time b2 and b3. Using E15E2 and E25E3[E1 we
obtain

H̃ (V)5h(V)1E1S̃22,

h(V)5va†a1E2S̃111E1S̃331gV~aS̃311a†S̃13!, ~8!

wheregV5g21sinb1g31cosb and tanb5g21/g32. A simple
look at the transformed Hamiltonians~7! and ~8! immedi-
ately shows that they both have dark states and the dyna
of the remaining two-level subsystems is the same. Thi
the basis on which rests the claim of dynamical equivale
betweenL andV configurations.

On closer examination, the complete equivalence betw
L andV configurations should also include higher-order p
cesses, since the action of first-order operators defined in
~5! is intrinsically nonlinear@15#. In what follows, we con-
centrate on second-order feasible processes like the one
resented byX23X315a†a(S3311)S21 ~for the L scheme!.
This results in a net transfer of one atomic excitation
tween the degenerate levels fromu1& to u2&, with the transi-
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tion enhanced by a factor which depends both on field
atomic populations. This enhancement is different for
processX31X235(a†a11)S33S21, which also results in a
transfer fromu1& to u2&, so that the second-order operator

@X31,X23#5~S332a†a!S21 ~9!

describes an effective intensity-dependent transition 1↔2,
stimulated by the field strength and the population in
intermediate level. In particular, the commutator will vani
if the population of the intermediate state is precisely eq
to the total number of photons in the system.

Take now the second-order operator for theV scheme,

@X31,X12#5~S111a†a11!S32, ~10!

which measures the difference between two two-step tra
fers of excitation between the degenerate upper atomic
els. Again, this second-order operator depends on the p
lation of the intermediate state and on the photon populat
However, this commutator will never vanish.

To graphically illustrate the differences between bo
schemes, we shall use a rootlike diagram constructed in
following way. We choose a Cartan subalgebra~i.e., maximal
set of commuting operators! containing the two independen
inversions h15S112S22 and h25S222S33 for L and h1
5S222S11 and h25S332S22 for V. Then, we define the
weight componentsk1 and k2 through the ‘‘eigenvalue’’
equations for first-order operators in Eq.~5!,

@h1 ,Xi j #5k1Xi j , @h2 ,Xi j #5k2Xi j , ~11!

and analogously for second-order operators. The eigenva
(k1 ,k2) obtained for relevant first- and second-order ope
tors are then placed on a two-dimensional diagram, usin
basis the vectors of the su~3! root diagram, which are angle
at 2p/3 to one another. One then draws from the cen
vectors to the points on the diagram. This is illustrated
Fig. 1.

We recall that the major feature of this weight diagram
that commutation is mapped, up to a multiplicative factor,
vector addition@16#. For instance, the result of@X31,X23# is
proportional to the vector resulting from the addition of t
root vectors forX31 andX23.

It is clear by inspection of Eqs.~9! and ~10!, and from
Fig. 1, thatL andV configurations are not equivalent whe
coupled via a quantum field: no unitary transformation act
on the atomic operators can transformH (L) into H (V). In
particular, no relabeling of the atomic states transforms aL
into aV: the structure of the second-order operators preve
this.

As one would expect, all differences vanish in syste
where first-order operators contain classical rather than qu
tum fields. If a is replaced by a complex numbera, the
transition operators of both schemes reduce to su~3! opera-
tors and close on equivalent su~3! algebras: in theL case, the
first-order operators becomeaS32,aS31 and their conjugates
while second-order operators@aS31,a* S23# reduces to
2a* aS21. A similar argument applies to theV case. The
equivalence found by Plenio can then simply be expres
1-2
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by the statement that the first-order operators forL can be
transformed into the first-order operators forV by geometri-
cal reflection of the root vector; it is this reflection whic
effects the relabeling of basis states proposed in Ref.@14#.

Although differences will certainly be noticeable whe
the number of field quanta and the level population are b
low, we observe that these differences can be important e
in strong fields when the number of atomsA is large.

As a simple though remarkable application of the abo
discussion, we consider the dynamics of theL and V con-
figurations in the dispersive regime, when

uD i j u@Agi jA^a†a&11, ~12!

with D i j 5Ei2Ej2v. Following Ref.@17#, let us define the
following unitary transformations:

FIG. 1. A rootlike diagram for the first-order operators~thick
lines! and second-order operators~dashed lines! for ~a! L and~b! V
schemes.
r-

l.
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U~« i j !5exp@« i j ~Xi j 2Xi j
† !#, ~13!

where

« i j 5
gi j

D i j
!1 ~14!

are small parameters in this regime. One then shows
H̃eff

(L)5U(«32)U(«31)H
(L)U†(«31)U

†(«32) is the effective
Hamiltonian,

H̃eff
(L)5«31g32~S121S12

† !~S332a†a!, ~15!

where we have omitted diagonal terms that contain the
namical Stark shift@18#. It is clear that there will be no
population transfer between levelsu1& and u2& when the
population of u3& is exactly equal to the number of fiel
quanta. In particular, there will be no transfer if the field is
the vacuum and levelu3& is unoccupied.

Applying the same method toH (V), we get H̃eff
(V)

5U(«31)U(«21)H
(V)U†(«21)U

†(«31), where

H̃eff
(V)5«21g13~S321S32

† !~S111a†a11!. ~16!

In contrast with the results for theL configuration, there is
alwaysa population transfer between the degenerate le
u2& andu3& via the intermediate level in theV configuration.
The transfer of excitations between levelsu2& and u3& in the
V configuration takes place even when levelu2& is unpopu-
lated and there are no field quanta. This occurs becaus
the spontaneous emission~stimulated by the zero-point fluc
tuations of the quantum field! from u2& to u1& with a subse-
quent absorption of the emitted photon leading to the po
lation of the upper levels. Once again, these differen
disappear in the limit of classical fields.

In conclusion, we have shown that theL andV configu-
rations cannot be taken as equivalent if we treat the pho
field as a quantized field. It is also possible to see why, ph
cally, these configurations are different: in aV configuration,
vacuum fluctuations can create a photon, the absorptio
which acts as a trigger for the transfer of excitation betwe
levels u2& and u3&. This transfer mechanism cannot occur
the L configuration.

It is the hope that these basic results will help to elucid
the origin of equivalences between different three-le
schemes, also when extra decay rates for the levels are t
into account.
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