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We describe the construction of some finite dimensional nhonunitary representations
of E(2), the Liegroup of Euclidean transformations in the plane. Some properties

of these representations are also discussed, with emphasis on indecomposable rep-
resentations. ©1999 American Institute of Physid$S0022-24869)02711-5

I. INTRODUCTION

The groupE(2) of Euclidean transformations in two dimensions is the noncompact semidirect
product groud R?]SO(2), which consists of Abelian translations in the plane together with rota-
tions. Its unitary irreducible representatiousirreps are either one-dimensional representations
or infinite dimensional representations which can be constructed in the standard way by
induction! Much less is known about the finite dimensional, nonunitary representatidb&2f
the prototype of which is the “natural” representation

cos® —sind x
m:(R(6),x,y)—| Sind cosd vy (1)
0 0 1

in terms of 3<3 matrices, wherdR(0) is the S@2) rotation parametrized by the angh and
(x,y) is a vector describing the translation part of the transformation.

The representation of E¢l) was obtained in the familiar way from ax2 representation of
SQ(2), which is extended to a}83 matrix by addition of an extra line and an extra column with
appropriate entries to account for the translation pai(@). This representation is not irreduc-
ible, but it is indecomposable.

It is the objective of this paper to present an explicit method of obtaining some finite-
dimensional indecomposable representationk (&).

One can verify, using Eq1), the composition rule foE(2) elements,

(R(01),X1,Y1) - (R(02),X2,Y2) = (R( 01+ 63) X1+ X, COSO; — Y, SiN6y,Y; + X, SiNO; +Y, COSH,).

2

From this composition rule, we can write a general elemd®(6}f,x,y) as the product
(1x,y)-(R(6),0,0), where (1,0,05 (R(6=0),0,0) is the unit element.

Throughout this paper, we will use complex coordinates, withx+iy. We can then obtain
the 2X 2 representations

e’ z\ 1 0
WZ(R(G),XN)E(R(B).Z)H(O 1>, WZ(R(0).Z)H(; ei())’ 3
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where R(0),z) now denotes an element B{2), andwhere the bar denotes complex conjugation.
The composition rule now reads

(R(61),21) - (R(82),22) = (R(01+ 6;),21+ 2,€' ). (4)

The full transformation in real space can be obtained from the real and imaginary parts of the
complex transformation.

A motivation for our work is thatE(2)~[R?]SO2) represents the simplest nontrivial ex-
ample of a semidirect product group, a family very useful in physics as it contains, amongst
others, the rigid rotor groupR®]SQ(3) of nuclear and molecular physics and the Poincaceip
[R*]SQO(3,1) of spacetime translations and boosts.

The starting point of our method is the Lie algel@@) of the groupE(2). (We will jump
freely between the algebi(2) and the groufe(2); all representations of(2) discussed here
can be integrated to representation€£¢2).) Thus, suppose that(R(#),z) is a representation of
E(2) on a finite-dimensional spa&é (It is a slight abuse of notation to write(R(6),z) because
the representations will, in general, depend on bo#nd z. However, this shorthand notation
causes no problem. Technically speaking, we are thinkirmpsfan element of the complex plane,
regarded as aeal Lie group, not a complex Lie groupThen,V decomposes into weight sub-
spaces according to the action of @D

V: (&) Wk y
where
W,={v e V:7(R(6),0)v=e*’}, (5)

wherek e Z so thatw(R(0+27),z) = w(R(0),z) for representations dE(2). We denote by

J J Jd
|0=_iﬁW(R(a)az)|ﬁ=z=01 p+=a—Z7T(R(9),Z)|9=z=0: P7=§W(R(9),Z)|a=z=o= (6)

a basis for thee(2) algebra, with nonzero commutation relations given by
[P+.p-1=0, [lo,p+]=*p.. @)
The elementp, andp_ are, respectively, “raising” and “lowering” operators, in the sense that
P+ WC W1, P-WECWy— ;. (8

In particular, for finite dimensional representations, they are nilpotent.

We have found that a useful and compact way of describing a representation ef2the
algebra is to display the result of EqZ) and(8) in a graphical or diagrammatic form. We derive
in Sec. Il the rules for constructing representationg(@) that have no weight multiplicity. The
tensor product of two such representations is simply obtained by combining their respective
graphs in an appropriate way, as shown in Sec. Il C. The resulting graph describes a representation
of e(2) which may or may not be decomposable; the problem of decomposing a tensor product
turns out to be highly nontrivial, and we present in Sec. VIII some results on this issue.

A feature of tensor product representations and of certain other representations that we will
present is that they typically contain indecomposable submodules with nontrivial weight multi-
plicities. One should recall that, thus far, the bulk of the resultEf@) have dealt with unitary
infinite dimensional representations, obtained either by induction or by the method of
contraction’ where one considers representationg () as appropriate limits of representations
of SU(2); in both cases, the weight multiplicity is never greater than 1. For the finite dimensional
case, some of our representations can be thought of as smooth deformation@)feptesenta-
tions. More generally, representations with trivial weight multiplicities are best accommodated
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inside the formalism of graded contractiémg SU(2), where the grading subgroup is the continu-
ous subgroup S@Q)CE(2). However, it is clear that the contraction of an @Wirrep cannot
possibly yield a representation &f(2) with nontrivial weight multiplicities. The possibility of
constructing indecomposable modules containing arbitrarily high weight multiplicities is therefore,
to our knowledge, completely new.

The representations df(2) that we construct belong to an identifiable family which, we
think, is likely to contain many representations useful in physics. To illustrate this point, we give,
in Sec. V, some explicit realizations of our representations. Moreover, the graphical method
behind our results can certainly be adapted to more complicated semidirect product®groups.

II. STRING REPRESENTATIONS

In this section we discuss representations with weight multiplicities equal to 1, i.e., represen-
tationsV for which, in the notation of5), dim(W,) <1, for all k. For such a representation, we let
M andN be, respectively, the maximum and minimum nontrivial weights.

A. Some lemmas

Lemma 0:Every one-dimensional representationkqf2) is of the form
X (R(6),2)—>e*’, 9

for somek e Z.

Proof: The translation subgroup, i.e., the subgroup consisting of all elements of the form
(R(0),2), is the commutator subgroup &f(2). So anyone-dimensional representation B2)
must factor through the quotied(2)/T, which is isomorphic to S@); the one-dimensional
representations of S@) are of the specified form. O

Lemma 1Let 0#|¢,) be an arbitrary vector in the one-dimensional subspsge V. Then,
at least one op, |¢,) andp_(p.|¢y)) must be zero fofp, ,p_]=0 to be satisfied.

Proof: The raising and lowering operatops andp_ are nilpotent and, since they commute,
so is their product, the $B)-invariant operatop,p_ . The restriction ofp, p_ to anyW, sub-
space is therefore nilpotent. The only nilpotent operator on a one-dimensional space is the zero
operator. If thew, subspaces are all one-dimensional, this showsghat =0 onV.

For an alternate, more explicit, proof, Ipt.p_|¢,) = a\|¢), whereea, is a proportionality
constant. This holds since the subsp¥i¢eis one-dimensional and, p_ is a weight-preserving
operator. Since the representation is finite dimensional, there existeh that p,p_)"¢y)
=(p+)"(p-)"| e = ekl ¢x) =0, from which it follows thata, = 0. O

Proposition 1: If we specify on which subspaceg, We raising and lowering operators are
zero and on which they are nonzero, subject to the condition in lemma 1, this determines a unique
representation of €). The resulting representation is indecomposable if and only M, and
p_W,,;, are not both zero for any m withfm<M.

Proof: Because of the condition, we can choose a bsig) s.t. || ¢m)=m|em)} of eigen-
states ofly, with |¢,) e W,,,, for eachm, and such that for eaame {N, ... ,M—1}, precisely
one of the following holds:

()) P+ @m)=|¢m+1) @andp_|@m+1)=0, which we represent by

|‘Pm+l>

[
(it) p+|em)=0 andp_|em1)=|em), with graph,

Downloaded 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



6090 J. Math. Phys., Vol. 40, No. 11, November 1999 J. Repka and H. de Guise

|SDm+1>
|em)
or
(i) pslemy=0 and p_|¢m,1)=0, i.e., there is no arrow betwedw, 1) and |¢.),
|(Pm>
|‘Pm+1>
Relative to the basi§|oy),|em_1), - - |eni1).|en)}, SAd2) acts diagonallyp, is represented

by a matrix which is zero except for a 1 immediately above the diagonal corresponding tmeach
for which possibility (i) above holds, ang_ is represented by a matrix which is zero except for
a 1 immediately below the diagonal corresponding to eaehl for which possibility(ii) above
holds.

Clearly the matrices fop, andp_ commute. The remaining commutatgig,p.]= £ p.
are satisfied since, for instancéoif - — p-+10)|@m) = ol @m+ 1)~ MP| em) = @m+1) =P+l @m) by
construction.

If p,W,=0=p_W,,, then

V=(&m<kWn) & (& m=>kWn) (10

is an e(2)-decomposition. Conversely, suppogee U@ U’ is an e(2)-decomposition but that
condition (iii ) above does not hold for arye {N,N+1,..M—1}. We can assume there exists
me{N,N+1,..M~—1} such thatW,,CU, W,,.;,CU’. Then eitherp, (W) or p_(W;1) is
nonzero. SincéJ andU’ are bothe(2)-spaces, this showdNU’#{0}, a contradiction. [
Representations with weight multiplicities all equal to 1 will be called string representations.

B. String representations in graphical form

To a representation thus constructed, we can associate a graph as a mnemonic device to
remember which of the conditionig, (ii) or (iii ) hold between two neighboring weight subspaces
W, andW,,, ; by drawing an up arrow froV,, to W,,,, ; when(i) applies, a down arrow from
W41 to W,, when (i) applies, and no arrow whe(iii ) occurs; subgraphs of the type

| Pm+ l>

O

|om)
for which p|¢,)#0 andp_| ¢y, 1) #0, cannot occur.

To obtain a representation &(2) relative to the chosen basis, we start by exponentiating
separately the diagonal matrix lgfto obtain the image ofR(8),0)e SO(2), and the off-diagonal
matrix elements of the generators of translatipnsandp_ to obtain (1z). The elementR(6),z)
is then constructed from the matrix multiplication of £1,(R(#6),0).
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For instance, the “raising string” representationeg), with a graph consisting only of up
arrows, exponentiates to titg2) representation,

. . _ d(N+1)6 gNe
gMed  dM-1)6, é(M—Z)G%ZZ L ZM=N+1 ZM-N
(M—=N+1)! (M—N)!
d(N+2)8 gNo

: 0o M- dM-20, ZM-N+2 ZM-N+1
* =i (R(6),2— (M—N+2)! (M—N+1)! ,

0 0 0 . gh+1e iz

0 0 0 . 0 gNe

11)

containing the S@) unirrepsM,M —1, ... N each with multiplicity 1. It is indecomposable.
The “lowering string” representation

l Mo 0 0 0 0
giMiz glM-1)0 0 0 0
eiM B%EZ ei(M*l)HZ ei(M*Z)G o 0 0

=m:(R(0),2—~

giMo giM-1)6
—EMfol —EM7N72 L. . ei(N+1)f} 0
(M—N—-1)! (M—N-2)!
giMo SN gM-1)¢ SM-N-1 el (N+1)i5 NG
(M—=N)! (M—N-1)!

(12
contains the S@) unirrepsM,M—1, ... N each with multiplicity 1, and nontrivial lowering
operators between each pair of adjacenfZ@ubspaces. It is also indecomposable.

The five-dimensional representation with graph
€ 0 0 0 0
% €’ z 0 0
=m:(R@,2—~ 0 0 1 O 0 (13)
‘ 0 0 0 e e?%
0 0 0 0 e2

is decomposable into two subspadésdV,, containing respectively the 38 irreps 2,1,0 and
-1-2.
The three-dimensional representation

e’ z
=m: (R~ 0 1 0 (14
0 z e
is indecomposable and equivalent to the “natural” representation of Bqg.

Note that, if 7 is anE(2) representation containing the &pirrepsM,M—1, ... N, then

Xk ™ is another (inequivalent representation containing the &) irreps M+k,M—1
+k, ... ,N+k.

Downloaded 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



6092 J. Math. Phys., Vol. 40, No. 11, November 1999 J. Repka and H. de Guise

C. Tensor product of two strings

Finally, it is also easy to represent the tensor product of two string representations in a
graphical way. Thus, iV, andV, are two representations &(2) spanned, respectively, by
tvi,i=my,m—1,...n;} and{w;,j=m,,m,—1,...n,}, then a basis for the tensor product
representationV,;®V, is given by the pointsv;®w; having coordinatesi(j) on a two-
dimensional grid. The arrows between poim®w; andv,®w, are determined from the action of
the e(2) elements owv; or w;. Thus, for instance, consider the following tensor product:

V2 @ w3 w v
ws \/
V2
wa
vy ® w3
(4 X =
w ()] ® Wo
Vo
Wo
Vo ® Wo (15)

where the final two-dimensional graph has been tilted so that states with the same weight occur at
the same horizontal heighfThe “corner” states on the graph have been explicitly indicated.

lll. PARALLELOGRAM REPRESENTATIONS

A. The parallelogram representation as tensor product
Consider the representation

ei0

1 0 e’ z
WS(R(0)12)9<? e_m)@( )Z iHZ_

0 0

0 0

1 eifz |’ (16
0

N|E|HN

0 e*iﬂ
which is obtained from the tensor product of the two-dimensional lowering string representation

and the two-dimensional raising string representation, with graph
: v ® Wy

/ ® \ = Yy ®wy V1 Q w_1.

Up @ w_y
17

Claim: The representatiomrs is indecomposable.

Proof: Otherwise suppos€=U& U’ is a nontrivial decomposition, and that one of the two
subspaces, sdy, contains a vectov in the two-dimensional subspa@é, of weight O of the form
V=a1(Vo®Wg) + as(vi®W_,), with a;#0. By acting withp,p_, we find p,p_v=a(vy
®w_;) must also be ilJ. Thus,v,@w_;eW, is also inU (since @;#0) and sov—a,(vy
®W_l): al(V0®W0) e U. Since p+(V0®W0) :V1®W0€ U and p_(V0®W0):V0®W_1E U as
well, we find thatU =V,U’={0}, a contradiction. O
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This generalizes to larger representations. Moz 0, let V), be the “raising-string” repre-
sentation with lowest weight 0 and highest weiyhtlt has a weight basis consisting of the lowest
weight vectorv, of weight 0, and nonzero weight vectovg=(p.)*v,, for k=1,...M, with
p.(vym)=0; the dimension isM+1. Similarly, for N=0, let V_y be the “lowering-string”
representation with lowest weightN and highest weight 0. It has a weight basis consisting of the
highest weight vectow, of weight 0, and nonzero weight vectors_,=(p_)*w,, for k
=1,...N, with p_(w_y)=0; the dimension iN+ 1. The action ofp_ on V,, and the action of
p. onV_y are both trivial.

The “parallelogram” representatiod\, _ is the tensor producty, _n=Vy®V_y; it has
lowest weight —N, highest weight M, and dimension M+ 1)(N+1). Since v, ,®w_,
=(p) (p_)'vo®Wo=(p_)'(p1)*ve®Wo, we see thaV, _y is generated by the weight vector
Vo®W,, which we call the “initial vector.” Twisting by the charactey, :(R(6),z)~—€""?, re 7,
gives a parallelogram representati®fy _n.,=x,®Vy _n With lowest weightr —N, highest
weight r+M, and dimension M +1)(N+1); it is generated by the “initial vector’y,®v,
®Wo.

For instance, the graph

(18)

is associated with th¥; _,., parallelogram representation.
Lemma 2: The parallelogram representatiofy V., is indecomposable.
Proof: Let Vi _n.,=U@U’ be a decomposition. Choose a babiwhose first vector isp,

= x:®Vo®W, and whose firstl, vectorsgg,p.p_ ¢o,(P+P-)%do, . . ..(P+p_)¥ 1, span the
weight subspac#®V, (of dimensiond,). Writing vectors in terms of this basis, we have that the
initial vector is ¢o=x; ®Vo®Wo=(1,0,0 ...)". Letv=(ay,az, . .. ,aq,0, ...),a;#0, be an

otherwise arbitrary vector ik, . Assume that € U, and consider

p+p,v=(0,a1,a2, . ,adr,l,O, A .)TE U,

(p+p,)2V=(0,0,a1,a2, . ,adr,z,o, . .)TE U,

(p+p,)df73V=(0, coaq,a,a3,0,...)TeU,
(p+p)% " 2v=(0,... @1,0,,0,...)TeU,
(pLp-)%"tv=(0,...,0@,0,...)T€U. (19

Thus, thed,th basis vector
= p p 41 ® ®Wq) = O 1 O eU 20
Vdr ]1( + ) (XI’ VO O) ( LA !) ( )

(sincea;#0 by assumption If this vector is inU, then the vector
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1 d—2 T
vdr,l=a—l((p+p,)f v—avg)=(0,...100...)TeU (21)
as well, and so is
_ 1 dr =3y — - =(0 1,0,0 T 22
Vg, -2 ((P+p-)""*v—ayvy -1~ a3zvg)=(0,...,1,000...) €U, (22)

ay

and so forth until one shows that all basis vector$nare inU. In effect, this argument is based
on the observation that the matrix of the restriction to each weight space of the ogeratoiis
a triangular matrix.

In particular, the initial vectol, ® vo®@Wwg is in U and, since an arbitrary basis statex v
®W_qeV can be obtained asp()(p-)9(x,®vo®Wo), it follows that U=V and U’ ={0},

which shows thaV¥ is indecomposable. O
In this way, we can construct indecomposable representations with arbitrarily high weight
multiplicities.

B. Subrepresentations of the parallelogram

Observation:A vector X _; ;= x,; @V, ®@W_;=(p.)*(p_)'(x;®vo®W,) generates a subrep-
resentation oWy _y., that is isomorphic t&/y | —n:.r+k—1 - AN example of this is given in Eq.
(23), where, inV3_,.o, a 2x2 parallelogram subrepresentatidf _;.; is generated byX;; o
=(p+)?p-(Vo®Wo),

.
.__.aiij_':'
&y

(23

Proposition 2: Every subrepresentation of a parallelogram representatign_y., can be
expressed as the subrepresentation generated by finitely many “initial vectors” of the form
(p)X(P_) (x,®Vo®W,), for suitable k1. The subrepresentations ofyV_n., are all indecom-
posable.

Proof: First, note that the weight subspad&CVy, _\., is spanned by vectors of the form
{(P) (P_) (xr®Vo®W,)[k—1=s—r}. The action ofp_ p_ on this basis is to map

PP (P (P) (Xr®Vo®Wo)—> (P ) H(p) " (X, ®Vo®Wo). (24)
Now, supposdJ CVy _y. is an indecomposable subrepresentation with nontrivial intersection

with the weight spac#/;. Choose the minimat such thatJ contains a nonzero vectere W; of
the form

V= ai(p ) (p ) T (X @ve®Wp), ag#0, k-T=s-r. (25)

i=0

Then, by thep . p_ argument of Lemma 2, all vectors of the form
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(P (p) i (x,@ve@Wo), 120, (26)

must be inU, and @.)*(p_)'(x;®Vvo®@W,) is an initial vector for the subspace of weighin U.

Do this for each weighs of U and discard redundant choicégectors as above that are
contained in the subspace generated by another such kéldterremaining finitely many “initial
vectors” generate the whole spable Note that the initial vectors have distinct weights.

Now supposé)=U,;® U, is a decomposition. Fix one of the initial vectors described above.
Then one ofU,, U,, sayU, contains a weight vector with nonzero overlap with this chosen
initial vector. But thenU,; actually contains that initial vector, because of the triangularity of the
operatorp, p_, as above. If there is only one initial vector, then we are done, by Lemma 2 and
the previous Observation. Otherwise, notice that odgecontains p, ) (p_)'(x;®Vo®Vy), it

must also contain the “final  vector’ {.)™(P_)"(x;®Vo@Ve)=(ps)" K
X (p)" M ((p) (p_) (xr®Vo®Vo)). But thenU; must contain all the initial vectors, and hence
all of U, soU is indecomposable. [l

Corollary: A basis for any subrepresentation of the parallelogram representatjpn . is
given by vectors of the forifp., )*(p_)'(x,®Vvo®V,) contained in this subrepresentation.

C. Quotient representations

Consider the representation associated with the graph

e 280 P 0 A 0 0 0 0

0 &Y 2’ 0 3£ 0 0 0 0
. 0 0 €& 0 z 0 0 0 O
0 # 0 & 0 z 2 0o o
> 2
.~"‘ ‘ 0
g =5 (R(6). 2> 0o 0 0o o0 € 0 0 0 o0
o o M o0 o € =z 0 0
rkd o o 0o 0o # 0o 1 0 o0
0 0 32* 0 0 z¢ 0 1 ze"
0 o 0 o0 P’ 0 z o0 e

(27)

This representation can be constructed by starting from the paralleloggagm,, and by remov-
ing (or, equivalently, setting to)Geach line and column corresponding to a node in the subrepre-
sentation with initial vectorg;®w_; andv,®w_,. It is therefore a quotient of the parallelogram
V3,—2;r :

Lemma 3: Quotient representations of a parallelogram are indecomposable.

Proof: Such a quotient representation has a single initial veatery,®wg. Let V=V,
®V, be a decomposition. By thg, p _ triangularity argument, the whole weight space containing
v must be in eithel; or V,; without loss of generality, we assume that it isMp, and thusv
itself is in V;. Since everything iV can be obtained fronv=vy®w, by acting with e(2)
generators, it follows that,=V,V,={0}, i.e.,V is indecomposable. O

It is also possible to take quotients of subrepresentations of a parallelogram, as shown on the
left-hand side of Eq(28), or even to make a string representation out of a quotient of a subpar-
allelogram, as shown on the right-hand side of that figure.
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(28

Thus, we can claim that

Proposition 3: A subquotient of a subrepresentation of the parallelogram. V; (i.e., the
quotient of two subrepresentations of the parallelogram_.;) is indecomposable, provided that
its graph is connected.

Proof: Let i,j uniquely label a minimal set of initial vectors; ; ,=(p+)'(pP-)'(x,)®Vo
®Wwp) of weightr +i—j in such a representation. Because initial vectors cannot have the same
weight, the elements in the sgX| ; \} can be ordered by increasing weight. These initial vectors
are also those of a subrepresentation of the parallelogfgm,... Let V=V,®V,. Using the
p.p_ triangularity argument, the vectors generated from an initial vector all belong to the same
subspace, eithe¥, or V,, depending on whether the initial vector is\f or V,. However, the
subspaces generated by two consecutive initial vectors must have a nontrivial intersection, for
otherwise the graph would be disconnectido the vectors in or above the higher subspace and
the vectors in or below the lower subspace

By the p,.p_ triangularity argument, each weight space in this intersection must belong to
only one ofV; or V,. Thus, the subspaces generated by two consecutive initial vectors must
belong to the same subspace, and, continuing this way, all subspaces must belong to the same
subspace, say;. This means thaV¥/, is empty and we are done. O

The last noteworthy result on quotients of subparallelograms is as follows:

Proposition 4: Given a (connected) string representation, there exists a subquotient of a
parallelogram which is isomorphic to this string.

Proof: In the string representation, let be the number of up arrows,the number of down
arrows, and construdt,, _ ., , with r adjusted so that the highest weight\gf, _ .., is equal to the
highest weight of the string, i.em+r. If the topmost arrow of the string is a down arrow then the
highest weight state of the representatignp v,,®wy is the heaviest initial vector of the subrep-
resentation. Otherwise, the initial vectors are “sources” of the type

unless the bottom-most arrow of the string is an up arrow, in which case the lightest initial vector
is the lowest weight vector of the representatighpvo®w_y. The heaviest initial vector, for
instance, is always of the form, ® vi®@wg. Next, we note that terminal vectors are either highest
or lowest weight vectors or “sinks” of the type

If the topmost arrow in the string is a down arrow, thgm®v,®wj is an initial vector; if the
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bottommost arrow is an up arrow, thgh®vo®@w_,, is an initial vector. For each “source,” as
described abovey has an initial vector, @ v, ®w_;, wherem—Kk is the number of up arrows
above the source ant-1 is the number of down arrows below it.

Having identified the initial vectors, one then constructs the corresponding subrepresentation
V of Vi, _,,. Consider now the subrepresentatighCV obtained by applying the operator
p.p_toV,ie.,V'=p,p_(V). The original string is the subquotiextV’. O

IV. GLUING

Not all representations need be quotients or subquotients of parallelograms. For instance,
consider the representation

e z 0 0 0 0
0 1 0 0 0 0
€% 2z 1 e’z €7 203
Q:t:;z:z:t' =>mROD=> o 7 o v o 0
\\ 0 0 0 0 e 2%
0 0 O 0 0 g 20

(29)
with dim(W,) =1, dim(Wg)=dim(W_;)=2, dim(W_,)=1. It is constructed by identifying the
terminal vector of the X2 parallelogram representation of EG7) with the terminal node of an
extra two-element raising string ending at the terminal node, i.e., by “gluing” the parallelogram
and the raising string at one node in the manner indicated by the graph.

Claim: The representatiomr; is indecomposable.

Proof: Otherwise suppos¥=Ua®U’ is a nontrivial decomposition. We can assubheon-
tains the weight spac&V_,. In this case, it also contains the standard basis veagrs
=(0,0,0,0,1,0) ande,=(0,0,0,1,0,0). But this last vector is the “terminal node” of the sub-
space which is isomorphic tas, and the argument given in connection to this representation
shows that eithet) or U’ must contain all of this subspace. Since we have already seeb that
must containg,, it must contain all of thers subspace, and therefore must be alMof O

This can be generalized to other more complicated examples. For instance, the representation

can be realized as shown as a two-point gluing. Note that the factors of 2 in the graph indicate that
the corresponding matrix element is of strength 2 rather than 1, as has been thus far assumed
throughout this paper. The representationcan also be shown to be indecomposable.

Not all gluings are indecomposable. The representation of (5, which is obtained by
gluing together two strings, is decomposable, as will be seen in Sec. VII.

(30
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V. EXPLICIT REALIZATIONS

In this section, we would like to exhibit some of the more interesting amongst the many
explicit realizations of the(2) algebra, along with examples of the kind of representations that
we have so far described.

Nonunitary representations occur in physics mostly as representations carried by tensor op-

erators. Thus, iﬁ'i" is theith component of a tensor operafbY transforming by the representation
\, and if O is a representation of an elemente§®) by linear operators, then the action@fon

T is given by
O:Th=[0,TN=2 a;T}, (31)
J

whereq;; are, in general, complex coefficients.
A. The adjoint representation
Let,

9 i a lma+ia|_a -
ar rae P \ar Ty e 0 e (32)

If we let these operators act on one another, we obtain the adjoint representag{@),ofith
the graph given in Eq.14).

B. Raising string or lowering string representations

Let
00 0,1 i (33
—el— p_— ——i—
P+ P $ 0 90’
and consider the set of polynomia(@’rd,e'(k*D0ra-1 gik+2)0pa=2" ikt @O0 = \with k
eZ,0e’*.

Using Eq. (31) and the realization of Eq(33), one sees that these polynomials carry a
representation equivalent to a raising string representation of dimegsidnwith lowest weight
k.

Similarly, the realization

0.9

ar (34

p+'_>01 p_-—e ’ IO'e_i

%1
action on the polynomialge’rd,e'("-1oa-1  el(n=A0 with neZ,qeZ", is a lowering
string representation of dimensiap-1 with lowest weightn—q.

We obtain a less trivial example if we let the operators of 8§) act on the polynomials

{rte'? rt=1e/t=D0 1 which yields a raising string representation with highest weight vector
rte'? of weightt. ‘ .
In a similar way, the polynomialérte ¢ rt=1e~ (=10 1 span a lowering string rep-

resentation oE(2) under the action of the operators of £E§2).

C. Parallelograms

Consider the three operators

32 92 3?9

i — =
P+ =% axay  ay* w2’
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7 2 #? 9P
P-=3x 2 oy " a2~ o 39
| = i J J _ Jd —d 36
0T T %oy Yoax) TV ow Vo (36)

With the identificationp. < Q. 1o« 11,, these are easily recognized as forminge¢2) sub-
algebra off R]°sa(3), the algebra of the rigid rotor.
We now consider the operators

. 25FML+ M) (L—M)IL! ol Mzt +M-2t
M= (37)

(2L)! T 2% (t—M)I(L+M—2t)!

which can be recognized as proportional to the spherical harmonics

[2L+1)1 .
Yim(0,0)= WXLM (39

if we make the identifications

—e?sing . e ?sing 39
0= ———, 7=c0S0, w=——"0 .
V2 V2
In general, we have
[p::XLM]:aLMkL—z,Mtza (40
with
aLM:<5(L—2,M:2|p:|5(LM>' (41)

with the upper and lower sign valid fomp., respectively, and where the number
(X__am=2|p=|XLm) is computed using the standard boson inner product. With these we can build
a variety of parallelogramgNote that thee(2) weight is3M.)

Thus, for instance, the set of nine operatfXgo, X 2, X4 +4,X40,X2.+2, X0} are the com-
ponents of a tensor which carries the parallelogram representéiog, with

. . 2L+ 1L(L-1)
(Xi—am=2lp+| X m)= T(L1M§21iZ|L_2:Mi2), (42

where (,M;2,=2|L—2M=2) is an S@3) Clebsch—Gordan coefficient.

Similarly, the se{X71,Xs1,Xs_3,X33,X3_1,X11} are the six components of a tensor which
carries the parallelogram representation. ;. ;.

Subparallelograms of these or of any parallelogram are obtained by simply removing from the
original parallelogram all the basis polynomials not contained in the subrepresentations.

It is also possible to obtain parallelograms from the realization of &). Repeated action of
these operators on the initial vectar’e™’ produce the parallelogram representation
V(12)(p-n),— (1/2)(p—ny:n - NOte that, since(p+n) and 3(p—n) must be integersp+n must be
even for the representation to remain finite dimensional.

The realization of Eq(32) is a special case of the more general realization
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. J i d . J i d
Xal(x=1)0| -yaily+t1)o| — . _
Prrre (ar r &0),pl%r © Fr 070)’
(Xx=y=2) 4 (X+y) d

. L 9
o S D)y 1) 96 T 2= D) (y+ 1) ar’ 43
from which we can extract various parallelograrfithe exponents,n of the initial vector Me'"?
must satisfy some conditions if the representation is to remain finite dimengional.

D. Quotients and strings
Consider now the realization

i0072 —i0(9 | .0 44
— — — =—ji—
pi—e’ g, poe o =i (44

Acting on the initial vectow_4 to generate a parallelogram, and removing from this parallelogram
the basis states* andr3e™'?, we obtain the string representation

g4 30 %We’ 20 0 0 0 0
0 ed we? 0 0 0 0
0 0 e 20 0 0 0 0
o >> I 0 0 we2l i W %Wei )
> 0 0 0 0 1 w’ o
0 0 0 o o ¢€° 0

0 0 0 0 0 wd? &

(45)
spanned by the basis stat@g'?,e'r?r,e % e 202 e 310 e 40},
A nice feature of this string is that it represents an exampleZafgraded-contraction of ¢B)
into e(2), asdiscussed in Ref. 4. The grading is generated by th&s&ubgroupe?™3'o. The
carrier spacd/ decomposes intt/=Vy,®V,;®V,, which contain the basis states

VO:{r,efl’,i 0[’}, Vlz{eif}rzyefzi 6['2}, sz{eziﬁyefif},efﬁe}, (46)
while the basis elements of E@4) have grades 1, 2, and O, respectively.

VI. TENSORING TWO RAISING OR TWO LOWERING STRINGS

In Sec. Il A, we considered the tensoring of a raising and a lowering string representation.
The resulting parallelogram, as well as all its subrepresentations and “connected” subquotients,
were shown to be indecomposable.

The next simplest example of tensor product is the product of two raising or two lowering
string representations. This yields a tensor product representation that is always decomposable into
a sum of raising or lowering string representations. The decomposition is closely related to the
decomposition of S(2) tensor products.

In this section, we discuss only the tensor product of two raising string representations since
the case of two lowering strings is handled in the exact same way.

A. Raising strings as contractions of su  (2) irreps

Consider the s(2) algebra spanned by the operatéts, ,L _,Ly}, with the usual nonzero
commutation relations

[Lo,L:]=%L., [Ls,L-]=2L,. (47
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If we now rescale the $8) generators to
L7H£7:6L7, L+_)£+:L+, LO_7£0:LO, (48)

express the $@) commutation relations in terms of the generators, and take the limit &s
—0, we see that

[£.,L_]=limeL, ,L_]=lime2Llo=lim2eLy=0,

e—0 e—0 e—0

(49
[Lo,L_]=lime[Lo,L_]=lim—eL_=—£_,

e—0 e—0

with the commutatof £, ,£y] remaining unchanged from the(& commutator. We recover the
algebrae(2) by the identificationC.. =p.. ,Lo=1¢, but, because the generatdrs andL , have
been treated asymmetrically, the resulting representation cannot be unitary.

This is an example of a contractiéChe more familiar example of rescaling, whére and
L, are treated on the same footing and both multiplied by the scale facti@ads to unitary
infinite dimensional representations. Coming back to #§), suppose that we are given a stan-
dard unitary representatidfy of the s2) algebra, of dimension, sayj 2 1. The effect of taking
the e—0 limit of the asymmetric scaling is to leave matrix elementsCof=L_, and Ly=Lg
unchanged, while setting to 0 the matrix elementsCaf=eL . The resulting representation,
wherep_=L_=0 everywhere but wherp, =L, acts by raising the weight of the @) states,
is clearly equivalent to a (j2- 1)-dimensional raising string representatipn The equivalence
relation just rescales the nonzeraqZumatrix elements of., to the standar@(2) matrix ele-
ments ofp, , which are 1. Thus, we can write, for a raising string representation

e—0
The lowest weight ofy; is —j. A general raising string representatign, of dimension 2+1

with lowest weight—j +k can be obtained by twisting; by a characteyy.

(Note that one can obtain a lowering string representation from &2) sepresentation by
scalingL , — £, =€L , and leaving the other two generators unchanged.

The advantage of introducing limits in such a fashion is that one can then think of raising
string representations as smooth deformations ()sepresentations.

B. Decomposing tensor products of two raising strings

First, recall that the tensor produgt® j , of two su?2) representationg; andj, of dimensions
2j;+1 and 3,+1, respectively, decomposes into a sum of2suepresentations of dimension
2j+1, with possible values gfgiven by|j1—jo|.li1—j2l+1]j1—j2l+2, ... j1+]2 and where
each value of allowed by the inequality occurs exactly once.

Proposition 5: The tensor product of two raising string representations, ® y;, .., of
dimensionj,+1 and 2j,+ 1, respectively, decomposes into a sum of raising string represen-
tations. The representations occuring in this tensor product have the dimerf§ierts, where j
takes the possible valués, —jo|,|j1—jo| +1|j1—j2/+2,....,j1+] and where each value of j
allowed by the inequality occurs exactly once.

Proof: Write
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Y, ® Vi, = xr, @ (ML @ x, @ (limT))
e—0 e—0

= Xry+r,® (imrjl® sz)

:Xr1+r2®

e—0 |

lim >, rj), lii—ial<i<ii+ia,

3

=Xr1+r2®

:; Yiiry+ry (51

O

Note that, because the limiting process by which we transform t{@ suvep into ane(2)
representation is smooth, i.e., because it is possible to define a sequen¢® oépresentations
parametrized by such that the limit wherr— 0 of this sequence corresponds to a raising string
representation, it is possible to interchange the process of taking the limit with the process of
taking the tensor product.

One may further remark that this limiting process cannot be used to analyze parallelogram
representations, since those correspond to tensor products of a raising and a lowering string
representations, i.e., a tensor product of “different” contractions.

VIl. ACYCLIC REPRESENTATIONS AS SUMS OF STRINGS

The decomposition of the tensor product of two raising or two lowering representations is a
special case of a more general theorem regarding “acyclic” representations, i.e., representations
containing no “cycles” of the form

An algebraic characterization of such acyclic representations is that the opprtagtor is 0
everywhere. The main result of this section is that acyclic representations are always decompos-
able into sums of string representations.

Definition: A finite-dimensional representatidhof E(2) is said to beacyclicif p,.p_=0 on
V.

Clearly a string is acyclic, by Proposition 1. For that matter, a direct sum of strings must be
acyclic. The goal of this section is to prove the converse: that any acyclic representation must be
a direct sum of strings. We begin by establishing some machinery.

We need first a concept which is not restricted to acyclic representations, that of a “chain.”
We define a “chain” to be a finite sequence of strictly increasing weight veetong, , 1,...,vg
in V, where eachv; has weightj, and such that for each<j<s, either p,(v;)=vj., or
P-(Vj+1)=Vj.

Thus, for instance, in theX22 parallelogram representation of Ed7), which is not acyclic,
there are infinitely many chains, each containingew, and vo@w_, but each containing as
middle element an otherwise arbitrary nonzero linear combination,®fw, andv,®w_;.

Specializing now to acyclic representations, we see that the congitipn =0 implies that
it is not possible to have both, (v;) #0 and p_(v;;1)#0. A chain is “maximal” if it cannot be
extended by including additional vectdrsecessarily at the top or the bottprithe space spanned
by the vectors in a maximal chain is a subrepresentatiovi, afecessarily a string.
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Begin by observing that any weight vector can always be embedded in a maximal chain, i.e.,
it is always possible to find a maximal chain which contains a specified weight vector. Suppose
that we have already definéd maximal chains,

1 1 1.
VepVi+1s e Vs
2 2 2 .
VrZ'Vr2+11 T ’Vsz’
(52
N N N
Ve Vrg+1r e Vs -

Note that we have displayed the chains horizontally rather than vertically for convenience. The
chains need not all start nor end at the same weight nor all have the same length. Suppose that they
are “fully independent,” in the sense that the vectfv§'} form a linearly independent set. Note
that if v is any vector in the “span” of thé\ chains, i.e., the space spanned by the vedtolf$,
thenp, (v) andp_(v) are also in the span of these chains, again because of the assumption that
p+p-=0.

As an inductive step, we have to show how to fiwe 1 fully independent maximal chains in
V. It will be fruitful to illustrate the various steps of the induction with the following example.

4

& 73

52 2
Ti0 :
& M

o
(53

This representation is found by gluing the string representations contdigings, 7>, 71, 70}
and{&;,&,,&1, 7m0} at the common nodey,. In the example, we assume tHdt=1 and that the
first maximal chain inmo contains{vi= 7,,v3=75,v3= 75,V1= 11,Vg= 70}

Let k be the highest weight for which theth weight space is not spanned by the vectors
{vi:m=1,..N} that lie in thekth weight space of the firsti chains.(In 7,, we havek=3.)

If there is a vectowr in the kth weight space which satisfigs (v) =0 but which is not in the
span of thelvy'}, we will choose it as the top vector in a new chain. Becausekkel(th weight
space is by construction contained in the span ofNtehains, the action gb_ on vectors in the
(k+1)th weight space must also take them into the span of tNegd®ins, so that cannot be in
the image ofp_ .

The other possibility is that eveny in the kth weight space which is not in the span of the
{vy} satisfiesp, (v) # 0. Choose such a. But the intersection of thek@ 1)th weight space with
the image ofp, is spanned by the vectofp, (vy)}. It is therefore possible to find @onzerg
vector of the formv’' =v—3cvy satisfyingp, (v')=0; sincev’ is not in the span of thévy'},
this is a contradiction.

In the example, this first step could yieki: &5 as the top state of the second chainvify,.
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Having found the top vector for a new chair@‘Ntll, with sy, =k, we can attempt to con-

struct the rest of the chain inductively by extending it from below.

Suppose we have constructed a chelfy *, ... vi\'i",v]'"* so that it and the originalN

maximal chains form a fully independent set, in the sense defined above.

If p_(v]**1)=0, and ifv]*** is not in the image op . , then we have constructed a maximal
chain, withry, =1, completmg the inductive step. In all other cases, it necessary to perform an
induction to extend the chain.

In general, the situation is that the induction leaves us with the possibility of constructing
N+1 fully independent chains, none of which can be extended at the “top,” meaning that for
eachm=1,..N+1,p, (v ) 0 andvy is not in the image op _ . At least one of the chains is

nonmaximal; we will assume that thN(kl)th chain is nonmaximal, with lowest weightand
thatl is the maximum of the lowest weights of the nonmaximal chaiNste that, although the
(N+1)th chain has so far only been extended as low as wdiglit is, by assumption, not
maximal and can therefore certainly be extended bédlpwet L be the number of nonmaximal
chains with lowest weighit.

We will produceN+ 1 chains, none of which can be extended at the top, so that the number
of nonmaximal chains with lowest weightis strictly less tharl, and so that none of the chains
are nonmaximal with lowest weight greater tHarinduction onL will then allow us to construct
N+1 chains so that any nonmaximal chains among them have lowest weight belamd,
continuing in this way, we can produdé+1 maximal chains.

If p_(v)*Y=0 andv]***=p, (v"), for some weight vectov” of weightl — 1, then choose
such av” and letv]**!=v". Note that the resulting chain and the chains labeledN ill form
a fully independent set, becawsf'\ijl cannot possibly be in the span of the chains labeledN, to
sincep, (v{'1Y)=v]'"! is not in thoseN chains. Extending theN+ 1)th chain by adding/[**}*
gives a chain WhICh has lowest weight 1, which reduces the number of nonmaximal chains
with lowest weightl and completes the inductive step in this case.

If p_(v]'"Y) is nonzero but linearly independent ¥ ,,vZ ,,...v];}, then letv]"
=p_ (vN“) The resulting N+ 1)th chain and the origindl maximal chains still form a fuIIy
independent set, and th&l {1)th chain has lowest weight-1, which completes the inductive
step in this case.

In the example ofr,g, these two situations occur. Starting with the top veétowe see that
p_£&5;=0 but thatp, £&,= &3, so that the chain containingg can be extended to includg. Since
p_é&,=¢&;, which is linearly independent of;;, the vector of weight 1 which is in the first
maximal chain, we can again extend the chain contaidigig¢,} to include &;,. However,
p_£&,= ng, Which is already in the first maximal chain. We therefore hlavé. The second chain
contains{&s,&,,£&,}, and it is not maximal.

It could be, (as in the case with&;, in ), that p_(v{'*!) is in the span of
{vi_y.vZ4,...v]" ;). Suppose

N+1

N

N
V= 2 anvili= 2 anp- (V). (54

m=1

(The last equality holds because a linear combination of vectors from\ ttfeins that is in the
image ofp_ must be the image und@r_ of a linear combination of vectors from thé chains,
because of our assumption thatp_=0.) Then letay,;=—1 and consider the vector

N+1
__VIN+1+ E amVI mzzl amVIm- (55

It satisfiesp_(u;)=0. Note that, aIthougstN+1 is not in the image op , , this is not necessarily
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true ofu,. Reordering if necessary, we can assume mmatz‘,:": lamv[“, with 1<Ny=<N+1 and
am#0, p_(v)#0, for I=sm=<N, (i.e., we reorder so that the firsb coefficients inu, are
nonzero)

In the example ofryy, Eg. (55) produces the vectar; = — &;+ 7, which is not in the first
(maxima) nor in the secondnonmaximal chain. There is no reordering necessaryuass a
linear combination of the two vectors in the first and second chainsai.ea,# 0, so thatN,
=2=N.

The situation is as follows. We hadét+ 1 “bottom” vectors;u; and the bottom vectors of the
original N maximal chains. We havd + 1 top vectors and the subspace spanned by the vectors in
theN+1 chains, but no chains containing. It is then a matter of reorganizing the states in the
subspace so as to replace one of the exishirigl chains with one that containg. First we
construct a chain containing, . There is a unique integek;=1 so that p_.)*1"'(u)#0 and
(p)*~ ") =0; letu;=(p;)'~'(u), for Isi=p;.

In the example ofrg, this integer isu;=3 since it is possible to agt;—1=3—1=2 times
on u;=— &+ 5, before getting p.)3(— &+ 5;)=0. Thus we havei;= — &, + 7;,U,= 7,,U3
= 73-

Reordering the chains if necessary, we can assumel y}a:tEani 1amV,T1' with a,,# 0 when-
ever I=m=Nj, for someN;=<Ny. (In 7;, we haveN;=1 sinceu; can be expressed as a linear
combination of a single vector.

If Uy, is not in the image op_, then the chain, ;.U cannot be extended further at the

top; it is a “raising chain.” If Uy, is in the image ofp_, then it is possible to add a “lowering
chain” above it. Indeed, in this case there is some=1 so that

Ny
(p_)"‘l( mZ:1 amVim> Uy, (56)

for all i with w;<i<wv;, and so tha‘erl=1amv’,I‘1 is not in the image op_. For alli with w4
. N . .
<isvyq, let uizEmtlamv{‘“. These vectors form a lowering chain.

In the example ofr,y, we haver,=4 sincep_n,= n3=us. The chain now containg; =
— &1t ;1 Up=1,, U= 1713, Ug=174.

We continue in the same way, finding positive integdgs=N;=N,=---=N; and integers
I=po=vo=spu1<vi<po,<v,<---<u=w;; making a suitable rearrangement of thet+1
chains; and for each<j=t, and for each with v; _;<i=<u;, letting

Ui=(p.)'"" "1y, ), (57)

and for each with u;<i<wj;, letting

U= % amvi", (58
m=1
so that for each with u;<i<v;,
p_(U)=Uj_1. (59
In this way we have constructed a lowering chain between gaadnd v; . Because
P+ (U)=Ujsq, (60)
for eachi with v;  <i<w;, j=1,...t, there is a raising chain between eagh; and u; .

In the example ofryy, we havet=1, as there is only one raising and one lowering chain to
be glued to the vectan; = — &, + n,. Our process therefore stopsigt=4.
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We can continue the construction until we reach a point wimr(eu,,l)zo, so the chain
cannot continue up to higher weights. Note that for

Ni
u, = 2 amVT (61
(- t

to be in the kernel op.., it must be true thap+(vr;:)=0, for each =m=N;. And if Uy, is not
in the image ofp_ , then at least one of the vector%l, for I=m=N,, must not be in the image

of p_. Renumbering yet again, if necessary, we can assume that this is trae=far, which
means thaw, is the highest weight of the chajv}.
In the example ofr,q, we haveu,= 7, as the top vectory, is in the kernel ofp, and not
in the image op_ . Thus, with the renumbering, the chdim, ,us,u,,u;} becomes the first chain.
The vectoray, Upgg,eUy, form a chain. They all lie in the span of the linearly independent
vectors making up th&l+1 chains{v{"}, for m=1,...N+ 1. Sincep_(u;) =0, eitheru, is not in
the image ofp,, in which case the chaifu, ,qu,...,u,,t} is maximal, oru;=p, (u,_4), for
some weight vectoru;_; of weight |—1. It can be added to produce a longer chain
{uj_1,u ,u,+1,...,uyt}. Observe thatu,_; cannot be in the space spanned by the chains

{vi},....{vN*1}. We have constructed a chgin;}; in one case it is maximal, and in the other it
has lowest weight— 1.

In the example ofryg, the chain is maximal since;= — &;+ 7, is not in the image op, .

Since every one of the vectots, for i=1, contains a nonzero component in what is now
labeled as the first chaifv'}, we can replace the chafw}} with the chain{u;} and the resulting
N-+1 chains will still be fully independent.

At this point there are different possibilities. One is that the chain labfigd that was
removed was the original nonmaximal chz{'w{\‘“}, and it has just been replaced by the chain
{u;}. This does not apply tar,q; the original second chain is not identical to the newly con-
structed maximal chain.

Otherwise, the original nonmaximal che(mi’\‘”} with lowest weightl is still present. In this

case we can change its label back/iHl,...,vQNtll. But nowp_(v{'"?) is not in the span of the

vectors in the otheN chains, sincep_(vll) is no longer present in the othBrchains. This means
that the (N+ 1)th chain can be extended to incluge(v]'" 1) as its “bottom” vector.

In the example ofrg, this is what happens. The original second chain contdigied,, &1}
Sincep_ &= 7, Which is no longer in the span of the newly constructed first maximal chain, we
can extend this second chain to incluglg

In either case, the number of nonmaximal chains with lowest weidjais been reduced.

In the example ofryy, we now restart the induction withn,, 73, 7., — &+ 71} as the first
maximal chain and&;,£,,&1, 70} as the second chain, we find that néw 3, N=1 but|=0.
However,p_7y,=0 andz; is not in the image op , . Thus, the second chain is maximal as it is.
This concludes the inductions: we have found the decompositian p&s the sum of two strings.

Theorem 1: A finite-dimensional representation of E(2) is acyclic if and only ifV is a
direct sum of indecomposable representations, in each of which the weight spaces are all of
dimension 1.

Proof: (<) Trivial.

(=) The above argument shows that, giveriully independent maximal chains that do not
span all ofV, it is possible to construdtl+1 fully independent maximal chains.

In attempting this construction, we may reach a situation where therBl&re fully inde-
pendent chains, but not all of them are maximal. Wd le¢ the maximum of the lowest weights
of the nonmaximal strings. The inductive step described above reduces the number of nonmaximal
strings with lowest weight. Repeated application of this procedure will eventually redudke
maximum of the lowest weights of the nonmaximal strings.

Continuing with an induction o, we can eventually eliminate all the nonmaximal chains,
producingN+ 1 fully independent maximal chains, as required.
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Then, since the number of fully independent chains is certainly bounded by the dimension of
the whole spac¥, we will eventually be able to construct enough chains that they span the whole
space. l

VIII. DISCUSSION AND CONCLUSION

In this paper, we have described numerous finite dimensional indecomposable representations
of E(2) by means of a method which encapsulates in graphical form all the necessary information
to explicitly construct, up to a character, a representation.

The basic type representation is the string, in which all the weight subspaces are of dimension
one. Using lemma 1 and proposition 1, we can associate to a string representation a graph, from
which it is easy to determine if the representation is decomposable or not. In an indecomposable
string representation, the “strength” of tref2) matrix element connecting two states is irrel-
evant; all indecomposable strings representations are equivalent to representations for which this
matrix element is 1.

We have been successful in showing the indecomposability of another very important class of
representations, the parallelograms and all their subrepresentations and quotients. Parallelograms
and their subrepresentations may contain nontrivial weight multiplicities, an unusual feature for
representations d(2). Wehave also shown how acyclic representations can be decomposed into
sums of string representations.

The problem of decomposing a general graph containing nontrivial weight multiplicities aris-
ing either per se or as from the tensor product of two general string representations is difficult.

Consider for instance the acyclic graph

¥

(62

with basis state$¢, ¢,¢, ¢}, in which p, ¢ =ay, with all other nonzero matrix elements being 1.
When a=—1, the representation decomposes into a sum containing(itveguivalent two-
dimensional subrepresentations.

Whena# —1, however, this can be decomposed into a sum of a three-dimensional and a
one-dimensional string. The special case wharel corresponds to a tensor product of the
two-dimensional raising string with itself.

The decomposability of some graphs can be understood in terms of representapnshaf
permutation group ofi objects. Unfortunately, arguments based on the permutation group are of
limited use becausé) the S,-invariant subspaces may themselves decompose fuffibiein-
stance, in the tensor product of a three-dimensional raising string with itself, the six-dimensional
subspace that carries the fully symmetric representatiors,otan be divided into a five-
dimensional and a one-dimensional indecomposable raising stfingxperience has shown that
the problem of deciding if a given graplstring or otherwisg can be obtained by tensoring
copies of a given string is nontrivial.

There is, however, one case which we would like to mention. Consider the tensor product of
an indecomposable string, with a basis of weight vectong, ... v, with <m, with another
indecomposable striny’ With weight vectorsv’ ., ... v’ such thatp,v’, ,=v’, if and
only if p,v,=vy, 1 andp_v’_,=v_,_,ifand only if p_v, . ,=vy. The tensor produd¥®V' is
decomposable into two parts, one of which is the one-dimensional indecomposable representation
with basis vectov=3,_,"(— 1)kvk®v’_k, because/’ occurs when we tensor togethdr—m
—1) copies ofV.
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The simplest example of this is found (63).
U1 vy
Yt ® vy =

v_y v,

(63

In this exampleV®V' decomposes into an eight-dimensional representation isomorpk@Oto
and a one-dimensional subspage-vo®v,—Vv;®Vv’_;+Vv,®v’,. Note that, obviously, the
weights ofV’ could be shifted up or down and the tensor product would still be decomposable.
What is important is the relative positions of the arrows, not the actual weights.

This family of decomposable tensor products can be related to the symmetric group as fol-
lows. It can be shown that, if the dimensionVfis d, then the (—1)-fold tensor product o¥/
with itself contains, up to a charactey, in the Sy_;-invariant subspace labeled by a Young
tableau containing a single column @f 1 boxes.

In the example of63), V is of dimensiond= 3, and a basis for the three-dimensional repre-
sentation oV ®V which carries thes, representation labeled by 1 column of 2 boxes is given by

W; X3 Wy Xp Wy X
r ' [
Vipg=x-3®det\, x|, Voii=x-s®dety, x|, Vo=x-s®dety, x| (64)

wherew; ,x;,i,j=0,1,2 are basis states for the first and second copy iof the tensor product
V®V, respectively. The representatidfi can be reconstructed if we observe that the nonzero
matrix elements op.. are given by

, P+W1 P+Xy Wy X1 Wz Xz ,
pivi,=x_3®de +de =x_3®de =v_,
Wo Xo P+Wo  P+Xp Wo  Xp
(65
P_V} ®de P-Wo P-%z odel 22 ®de*w2 2y
-Vo=X-3 X-3 =X-3 =Vo
1 X1 p-w; p-X; Wo Xo

From this, it can be seen how the decompositioVafV' is related to the action of symmetric
group on )Y, and why the scalav is alternating in nature.

Finally, even if all the examples of decomposable tensor products discussed in this paper can
ultimately be related to the symmetric group, we believe that there very likely exist decomposable
graphs with nontrivial weight multiplicities which are unrelatedSp. We have, unfortunately,
been unable to isolate a provable conjecture on this matter. The low-dimensional examples of this
section are sufficiently complex to illustrate the difficulty of the general problem.

In a subsequent publication, we will investigate the role of gluings of the type fou(@0jn
in the construction of finite dimensional representations.

There is no doubt that results similar to Lemma 1 and Proposition 1 can be extended to other
groups® in particular within the context of graded contractidrisis also reasonable to expect that
the method can be generalized to the construction of finite dimensional representations of other
semidirect product groups. In that regard, one should observe that the ogerptois in fact, the
e(2) Casimir operator, so that one way of generalizing the concept of string representations to
other groups is to require that the appropriate Casimir be 0. It remains to see how other concepts,
such as parallelograms, can be generalized to other examples.
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