
irect
ta-
ns
y by

th
-

ite-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 40, NUMBER 11 NOVEMBER 1999

Downloaded
Some finite dimensional indecomposable representations
of E„2…

Joe Repka
Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3, Canada

Hubert de Guise
Centre de Recherches Mathe´matiques, Universite´ de Montréal,
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We describe the construction of some finite dimensional nonunitary representations
of E(2), the Liegroup of Euclidean transformations in the plane. Some properties
of these representations are also discussed, with emphasis on indecomposable rep-
resentations. ©1999 American Institute of Physics.@S0022-2488~99!02711-5#

I. INTRODUCTION

The groupE(2) of Euclidean transformations in two dimensions is the noncompact semid
product group@R2#SO~2!, which consists of Abelian translations in the plane together with ro
tions. Its unitary irreducible representations~unirreps! are either one-dimensional representatio
or infinite dimensional representations which can be constructed in the standard wa
induction.1 Much less is known about the finite dimensional, nonunitary representations ofE(2),
the prototype of which is the ‘‘natural’’ representation

p:~R~u!,x,y!°S cosu 2sinu x

sinu cosu y

0 0 1
D ~1!

in terms of 333 matrices, whereR(u) is the SO~2! rotation parametrized by the angleu, and
(x,y) is a vector describing the translation part of the transformation.

The representation of Eq.~1! was obtained in the familiar way from a 232 representation of
SO~2!, which is extended to a 333 matrix by addition of an extra line and an extra column wi
appropriate entries to account for the translation part ofE(2). This representation is not irreduc
ible, but it is indecomposable.

It is the objective of this paper to present an explicit method of obtaining some fin
dimensional indecomposable representations ofE(2).

One can verify, using Eq.~1!, the composition rule forE(2) elements,

~R~u1!,x1 ,y1!•~R~u2!,x2 ,y2!5~R~u11u2!,x11x2 cosu12y2 sinu1 ,y11x2 sinu11y2 cosu1!.
~2!

From this composition rule, we can write a general element (R(u),x,y) as the product
(1,x,y)•(R(u),0,0), where (1,0,0)5(R(u50),0,0) is the unit element.

Throughout this paper, we will use complex coordinates, withz5x1 iy . We can then obtain
the 232 representations

p:~R~u!,x,y![~R~u!,z!°S eiu z

0 1D , p̃:~R~u!,z!°S 1 0

z̄ e2 iuD , ~3!
60870022-2488/99/40(11)/6087/23/$15.00 © 1999 American Institute of Physics
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where (R(u),z) now denotes an element ofE(2), andwhere the bar denotes complex conjugatio
The composition rule now reads

~R~u1!,z1!•~R~u2!,z2!5~R~u11u2!,z11z2eiu1!. ~4!

The full transformation in real space can be obtained from the real and imaginary parts
complex transformation.

A motivation for our work is thatE(2);@R2#SO~2! represents the simplest nontrivial e
ample of a semidirect product group, a family very useful in physics as it contains, am
others, the rigid rotor group@R5#SO~3! of nuclear and molecular physics and the Poincare´ group
@R4#SO~3,1! of spacetime translations and boosts.

The starting point of our method is the Lie algebrae(2) of the groupE(2). ~We will jump
freely between the algebrae(2) and the groupE(2); all representations ofe(2) discussed here
can be integrated to representations ofE(2).! Thus, suppose thatp(R(u),z) is a representation o
E(2) on a finite-dimensional spaceV. ~It is a slight abuse of notation to writep(R(u),z) because
the representations will, in general, depend on bothz and z̄. However, this shorthand notatio
causes no problem. Technically speaking, we are thinking ofz as an element of the complex plan
regarded as areal Lie group, not a complex Lie group.! Then,V decomposes into weight sub
spaces according to the action of SO~2!,

V5 % Wk ,

where

Wk5$vPV:p~R~u!,0!v5eikuv%, ~5!

wherekPZ so thatp(R(u12p),z)5p(R(u),z) for representations ofE(2). Wedenote by

l 052 i
]

]u
p~R~u!,z!uu5z50 , p15

]

]z
p~R~u!,z!uu5z50 , p25

]

] z̄
p~R~u!,z!uu5z50 , ~6!

a basis for thee(2) algebra, with nonzero commutation relations given by

@p1 ,p2#50, @ l 0 ,p6#56p6 . ~7!

The elementsp1 andp2 are, respectively, ‘‘raising’’ and ‘‘lowering’’ operators, in the sense th

p1Wk#Wk11 , p2Wk#Wk21 . ~8!

In particular, for finite dimensional representations, they are nilpotent.
We have found that a useful and compact way of describing a representation of thee(2)

algebra is to display the result of Eqs.~7! and~8! in a graphical or diagrammatic form. We deriv
in Sec. II the rules for constructing representations ofe(2) that have no weight multiplicity. The
tensor product of two such representations is simply obtained by combining their resp
graphs in an appropriate way, as shown in Sec. II C. The resulting graph describes a repres
of e(2) which may or may not be decomposable; the problem of decomposing a tensor p
turns out to be highly nontrivial, and we present in Sec. VIII some results on this issue.

A feature of tensor product representations and of certain other representations that w
present is that they typically contain indecomposable submodules with nontrivial weight m
plicities. One should recall that, thus far, the bulk of the results forE(2) have dealt with unitary
infinite dimensional representations, obtained either by induction or by the metho
contraction,2,3 where one considers representations ofE(2) as appropriate limits of representatio
of SU~2!; in both cases, the weight multiplicity is never greater than 1. For the finite dimens
case, some of our representations can be thought of as smooth deformations of SU~2! representa-
tions. More generally, representations with trivial weight multiplicities are best accommod
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



u-

fore,

e
give,
ethod
s.

esen-
et

rm

l

e,

e zero

unique

6089J. Math. Phys., Vol. 40, No. 11, November 1999 Some finite dimensional indecomposable . . .

Downloaded
inside the formalism of graded contractions4 of SU~2!, where the grading subgroup is the contin
ous subgroup SO~2!,E(2). However, it is clear that the contraction of an SU~2! irrep cannot
possibly yield a representation ofE(2) with nontrivial weight multiplicities. The possibility of
constructing indecomposable modules containing arbitrarily high weight multiplicities is there
to our knowledge, completely new.

The representations ofE(2) that we construct belong to an identifiable family which, w
think, is likely to contain many representations useful in physics. To illustrate this point, we
in Sec. V, some explicit realizations of our representations. Moreover, the graphical m
behind our results can certainly be adapted to more complicated semidirect product group5

II. STRING REPRESENTATIONS

In this section we discuss representations with weight multiplicities equal to 1, i.e., repr
tationsV for which, in the notation of~5!, dim(Wk)<1, for all k. For such a representation, we l
M andN be, respectively, the maximum and minimum nontrivial weights.

A. Some lemmas

Lemma 0:Every one-dimensional representation ofE(2) is of the form

xk :~R~u!,z!°eiku, ~9!

for somekPZ.
Proof: The translation subgroupT, i.e., the subgroup consisting of all elements of the fo

(R(0),z), is the commutator subgroup ofE(2). So anyone-dimensional representation ofE(2)
must factor through the quotientE(2)/T, which is isomorphic to SO~2!; the one-dimensiona
representations of SO~2! are of the specified form. h

Lemma 1:Let 0Þuwk& be an arbitrary vector in the one-dimensional subspaceWk,V. Then,
at least one ofp1uwk& andp2(p1uwk&) must be zero for@p1 ,p2#50 to be satisfied.

Proof: The raising and lowering operatorsp1 andp2 are nilpotent and, since they commut
so is their product, the so~2!-invariant operatorp1p2 . The restriction ofp1p2 to anyWk sub-
space is therefore nilpotent. The only nilpotent operator on a one-dimensional space is th
operator. If theWk subspaces are all one-dimensional, this shows thatp1p250 on V.

For an alternate, more explicit, proof, letp1p2uwk&5akuwk&, whereak is a proportionality
constant. This holds since the subspaceWk is one-dimensional andp1p2 is a weight-preserving
operator. Since the representation is finite dimensional, there existsn such that (p1p2)nuwk&
5(p1)n(p2)nuwk&5ak

nuwk&50, from which it follows thatak50. h

Proposition 1: If we specify on which subspaces Wm the raising and lowering operators are
zero and on which they are nonzero, subject to the condition in lemma 1, this determines a
representation of e(2). The resulting representation is indecomposable if and only if p1Wm and
p2Wm11 are not both zero for any m with N<m,M .

Proof: Because of the condition, we can choose a basis$uwm& s.t. l 0uwm&5muwm&% of eigen-
states ofl 0 , with uwm&PWm , for eachm, and such that for eachmP$N, . . . ,M21%, precisely
one of the following holds:

~i! p1uwm&5uwm11& andp2uwm11&50, which we represent by
uwm11&

uwm&
~ii ! p1uwm&50 andp2uwm11&5uwm&, with graph,
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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uwm11&

uwm&
or

~iii ! p1uwm&50 and p2uwm11&50, i.e., there is no arrow betweenuwm11& and uwm&,

uwm&
:

uwm11&
.

Relative to the basis$uwM&,uwM21&, . . . ,uwN11&,uwN&%, so~2! acts diagonally,p1 is represented
by a matrix which is zero except for a 1 immediately above the diagonal corresponding to em
for which possibility~i! above holds, andp2 is represented by a matrix which is zero except
a 1 immediately below the diagonal corresponding to eachm11 for which possibility~ii ! above
holds.

Clearly the matrices forp1 and p2 commute. The remaining commutators@ l 0 ,p6#56p6

are satisfied since, for instance, (l 0p12p1l 0)uwm&5 l 0uwm11&2mp1uwm&5uwm11&5p1uwm& by
construction.

If p1Wk505p2Wk11, then

V5~ % m<kWm! % ~ % m.kWm! ~10!

is an e(2)-decomposition. Conversely, supposeV5U % U8 is an e(2)-decomposition but tha
condition ~iii ! above does not hold for anykP$N,N11,...,M21%. We can assume there exis
mP$N,N11,...,M21% such thatWm#U, Wm11#U8. Then eitherp1(Wm) or p2(Wm11) is
nonzero. SinceU andU8 are bothe(2)-spaces, this showsUùU8Þ$0%, a contradiction. h

Representations with weight multiplicities all equal to 1 will be called string representat

B. String representations in graphical form

To a representation thus constructed, we can associate a graph as a mnemonic de
remember which of the conditions~i!, ~ii ! or ~iii ! hold between two neighboring weight subspac
Wm andWm11 by drawing an up arrow fromWm to Wm11 when~i! applies, a down arrow from
Wm11 to Wm when ~ii ! applies, and no arrow when~iii ! occurs; subgraphs of the type

uwm11&

uwm&
for which p1uwm&Þ0 andp2uwm11&Þ0, cannot occur.

To obtain a representation ofE(2) relative to the chosen basis, we start by exponentia
separately the diagonal matrix ofl 0 to obtain the image of (R(u),0)P SO~2!, and the off-diagonal
matrix elements of the generators of translationsp1 andp2 to obtain (1,z). The element (R(u),z)
is then constructed from the matrix multiplication of (1,z)•(R(u),0).
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For instance, the ‘‘raising string’’ representation ofe(2), with a graph consisting only of up
arrows, exponentiates to theE(2) representation,

⇒p1:~R~u!,z!°SeiMu ei(M21)uz ei(M22)u 1
2 z2 . . .

ei(N11)u

~M2N11!!
zM2N11

eiNu

~M2N!!
zM2N

0 ei(M21)u ei(M22)uz . . .
ei(N11)u

~M2N12!!
zM2N12

eiNu

~M2N11!!
zM2N11

A A A A A

0 0 0 . . . ei(N11)u eiNu z

0 0 0 . . . 0 eiNu

D,

~11!

containing the SO~2! unirrepsM ,M21, . . . ,N each with multiplicity 1. It is indecomposable.
The ‘‘lowering string’’ representation

⇒p2:~R~u!,z!°1
eiMu 0 0 . . . 0 0

eiM uz̄ ei (M21)u 0 . . . 0 0

eiM u 1
2z̄2 ei (M21)uz̄ ei (M22)u . . . 0 0

A A A A A

eiM u

~M2N21!!
z̄M2N21

ei (M21)u

~M2N22!!
z̄M2N22 . . . . . . ei (N11)u 0

eiM u

~M2N!!
z̄M2N

ei (M21)u

~M2N21!!
z̄M2N21 . . . . . . ei (N11)uz̄ eiNu

2
~12!

contains the SO~2! unirrepsM ,M21, . . . ,N each with multiplicity 1, and nontrivial lowering
operators between each pair of adjacent SO~2! subspaces. It is also indecomposable.

The five-dimensional representation with graph

⇒p3:~R~u!,z!°S e2iu 0 0 0 0

e2iuz̄ eiu z 0 0

0 0 1 0 0

0 0 0 e2iu e22iu z

0 0 0 0 e22iu

D ~13!

is decomposable into two subspacesV1% V2, containing respectively the SO~2! irreps 2,1,0 and
21,22.

The three-dimensional representation

⇒p4:~R~u!,z!°Seiu z 0

0 1 0

0 z̄ e2iu
D ~14!

is indecomposable and equivalent to the ‘‘natural’’ representation of Eq.~1!.
Note that, ifp is anE(2) representation containing the SO~2! irreps M ,M21, . . . ,N, then

xk•p is another ~inequivalent! representation containing the SO~2! irreps M1k,M21
1k, . . . ,N1k.
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C. Tensor product of two strings

Finally, it is also easy to represent the tensor product of two string representations
graphical way. Thus, ifV1 and V2 are two representations ofE(2) spanned, respectively, b
$v i ,i 5m1 ,m121, . . .n1% and $wj , j 5m2 ,m221, . . . ,n2%, then a basis for the tensor produ
representationV1^ V2 is given by the pointsv i ^ wj having coordinates (i , j ) on a two-
dimensional grid. The arrows between pointv i ^ wj andvk^ wl are determined from the action o
the e(2) elements onv i or wj . Thus, for instance, consider the following tensor product:

~15!

where the final two-dimensional graph has been tilted so that states with the same weight o
the same horizontal height.~The ‘‘corner’’ states on the graph have been explicitly indicated.!

III. PARALLELOGRAM REPRESENTATIONS

A. The parallelogram representation as tensor product

Consider the representation

p5 :~R~u!,z!°S 1 0

z̄ e2 iuD ^ S eiu z

0 1D 5S eiu z 0 0

0 1 0 0

eiuz̄ zz̄ 1 e2 iuz

0 z̄ 0 e2 iu

D , ~16!

which is obtained from the tensor product of the two-dimensional lowering string represen
and the two-dimensional raising string representation, with graph

~17!

Claim: The representationp5 is indecomposable.
Proof: Otherwise supposeV5U % U8 is a nontrivial decomposition, and that one of the tw

subspaces, sayU, contains a vectorv in the two-dimensional subspaceW0 of weight 0 of the form
v5a1(v0^ w0)1a2(v1^ w21), with a1Þ0. By acting with p1p2 , we find p1p2v5a1(v1

^ w21) must also be inU. Thus,v1^ w21PW0 is also inU ~sincea1Þ0) and sov2a2(v1

^ w21)5a1(v0^ w0)PU. Sincep1(v0^ w0)5v1^ w0PU and p2(v0^ w0)5v0^ w21PU as
well, we find thatU5V,U85$0%, a contradiction. h
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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This generalizes to larger representations. ForM>0, let VM be the ‘‘raising-string’’ repre-
sentation with lowest weight 0 and highest weightM. It has a weight basis consisting of the lowe
weight vectorv0 of weight 0, and nonzero weight vectorsvk5(p1)kv0, for k51,...,M , with
p1(vM)50; the dimension isM11. Similarly, for N>0, let V2N be the ‘‘lowering-string’’
representation with lowest weight2N and highest weight 0. It has a weight basis consisting of
highest weight vectorw0 of weight 0, and nonzero weight vectorsw2k5(p2)kw0, for k
51,...,N, with p2(w2N)50; the dimension isN11. The action ofp2 on VM and the action of
p1 on V2N are both trivial.

The ‘‘parallelogram’’ representationVM ,2N is the tensor productVM ,2N5VM ^ V2N ; it has
lowest weight 2N, highest weight M, and dimension (M11)(N11). Since vk^ w2 l

5(p1)k(p2) lv0^ w05(p2) l(p1)kv0^ w0, we see thatVM ,2N is generated by the weight vecto
v0^ w0, which we call the ‘‘initial vector.’’ Twisting by the characterx r :(R(u),z)°eir u, r PZ,
gives a parallelogram representationVM ,2N;r5x r ^ VM ,2N with lowest weight r 2N, highest
weight r 1M , and dimension (M11)(N11); it is generated by the ‘‘initial vector’’x r ^ v0

^ w0.
For instance, the graph

~18!

is associated with theV3,22;r parallelogram representation.
Lemma 2: The parallelogram representation VM ,2N;r is indecomposable.
Proof: Let VM ,2N;r5U % U8 be a decomposition. Choose a basisT whose first vector isf0

5x r ^ v0^ w0 and whose firstdr vectorsf0 ,p1p2f0 ,(p1p2)2f0 , . . . ,(p1p2)dr21f0 span the
weight subspaceWr ~of dimensiondr). Writing vectors in terms of this basis, we have that t
initial vector isf05x r ^ v0^ w05(1,0,0, . . . )T. Let v5(a1 ,a2 , . . . ,adr

,0, . . . )T,a1Þ0, be an
otherwise arbitrary vector inWr . Assume thatvPU, and consider

p1p2v5~0,a1 ,a2 , . . . ,adr21 ,0, . . .!TPU,

~p1p2!2v5~0,0,a1 ,a2 , . . . ,adr22,0, . . .!TPU,

A

~p1p2!dr23v5~0, . . . ,a1 ,a2 ,a3,0, . . .!TPU,

~p1p2!dr22v5~0, . . . ,a1 ,a2,0, . . .!TPU,

~p1p2!dr21v5~0, . . . ,0,a1,0, . . .!TPU. ~19!

Thus, thedr th basis vector

vdr
5

1

a1
~p1p2!dr21~x r ^ v0^ w0!5~0, . . . ,1,0, . . .!TPU ~20!

~sincea1Þ0 by assumption!. If this vector is inU, then the vector
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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vdr215
1

a1
~~p1p2!dr22v2a2vdr

!5~0, . . . ,1,0,0, . . . !TPU ~21!

as well, and so is

vdr225
1

a1
~~p1p2!dr23v2a2vdr212a3vdr

!5~0, . . .,1,0,0,0, . . . !TPU, ~22!

and so forth until one shows that all basis vectors inWr are inU. In effect, this argument is base
on the observation that the matrix of the restriction to each weight space of the operatorp1p2 is
a triangular matrix.

In particular, the initial vectorx r ^ v0^ w0 is in U and, since an arbitrary basis statex r ^ vs

^ w2qPV can be obtained as (p1)s(p2)q(x r ^ v0^ w0), it follows that U5V and U85$0%,
which shows thatV is indecomposable. h

In this way, we can construct indecomposable representations with arbitrarily high w
multiplicities.

B. Subrepresentations of the parallelogram

Observation:A vector Xk,2 l ,r5x r ^ vk^ w2 l5(p1)k(p2) l(x r ^ v0^ w0) generates a subrep
resentation ofVM ,2N;r that is isomorphic toVM2k,l 2N;r 1k2 l . An example of this is given in Eq
~23!, where, inV3,22;0, a 232 parallelogram subrepresentationV1,21;1 is generated byX2,1,0

5(p1)2p2(v0^ w0),

~23!

Proposition 2: Every subrepresentation of a parallelogram representation VM ,2N;r can be
expressed as the subrepresentation generated by finitely many ‘‘initial vectors’’ of the
(p1)k(p2) l(x r ^ v0^ w0), for suitable k, l. The subrepresentations of VM ,2N;r are all indecom-
posable.

Proof: First, note that the weight subspaceWs,VM ,2N;r is spanned by vectors of the form
$(p1)k(p2) l(x r ^ v0^ w0)uk2 l 5s2r %. The action ofp1p2 on this basis is to map

p1p2 :~p1!k~p2! l~x r ^ v0^ w0!°~p1!k11~p2! l 11~x r ^ v0^ w0!. ~24!

Now, supposeU,VM ,2N;r is an indecomposable subrepresentation with nontrivial intersec
with the weight spaceWs . Choose the minimalk such thatU contains a nonzero vectorvPWs of
the form

v5(
i>0

a i~p1! k̃1 i~p2! l̃ 1 i~x r ^ v0^ w0!, a0Þ0, k̃2 l̃ 5s2r . ~25!

Then, by thep1p2 argument of Lemma 2, all vectors of the form
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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~p1! k̃1 i~p2! l̃ 1 i~x r ^ v0^ w0!, i>0, ~26!

must be inU, and (p1) k̃(p2) l̃ (x r ^ v0^ w0) is an initial vector for the subspace of weights in U.
Do this for each weights of U and discard redundant choices~vectors as above that ar

contained in the subspace generated by another such vector!. The remaining finitely many ‘‘initial
vectors’’ generate the whole spaceU. Note that the initial vectors have distinct weights.

Now supposeU5U1% U2 is a decomposition. Fix one of the initial vectors described abo
Then one ofU1 , U2, say U1, contains a weight vector with nonzero overlap with this cho
initial vector. But thenU1 actually contains that initial vector, because of the triangularity of
operatorp1p2 , as above. If there is only one initial vector, then we are done, by Lemma 2
the previous Observation. Otherwise, notice that onceU1 contains (p1)k(p2) l(x r ^ v0^ v0), it
must also contain the ‘‘final vector’’ (p1)m(p2)n(x r ^ v0^ v0)5(p1)m2k

3(p2)n2 l((p1)k(p2) l(x r ^ v0^ v0)). But thenU1 must contain all the initial vectors, and hen
all of U, soU is indecomposable. h

Corollary: A basis for any subrepresentation of the parallelogram representation Vm,2n;r is
given by vectors of the form(p1)k(p2) l(x r ^ v0^ v0) contained in this subrepresentation.

C. Quotient representations

Consider the representation associated with the graph

⇒p6:~R~u!,z!°

¨

e4iu ze3iu 1
2z

2e2iu 0 1
6 z3eiu 0 0 0 0

0 e3iu ze2iu 0 1
2z

2eiu 0 0 0 0

0 0 e2iu 0 zeiu 0 0 0 0

0 z̄e3iu 0 e2iu 0 zeiu 1
2z

2 0 0

0 0 0 0 eiu 0 0 0 0

0 0 z̄e2iu 0 0 eiu z 0 0

0 0 0 0 z̄eiu 0 1 0 0

0 0 1
2z

2e2iu 0 0 zeiu 0 1 ze2iu

0 0 0 0 1
2z̄

2eiu 0 z̄ 0 e2iu

©
.

~27!

This representation can be constructed by starting from the parallelogramV3,22;0, and by remov-
ing ~or, equivalently, setting to 0! each line and column corresponding to a node in the subre
sentation with initial vectorsv3^ w21 andv2^ w22. It is therefore a quotient of the parallelogra
V3,22;r .

Lemma 3: Quotient representations of a parallelogram are indecomposable.
Proof: Such a quotient representation has a single initial vector,v5v0^ w0. Let V5V1

% V2 be a decomposition. By thep1p2 triangularity argument, the whole weight space contain
v must be in eitherV1 or V2; without loss of generality, we assume that it is inV1, and thusv
itself is in V1. Since everything inV can be obtained fromv5v0^ w0 by acting with e(2)
generators, it follows thatV15V,V25$0%, i.e., V is indecomposable. h

It is also possible to take quotients of subrepresentations of a parallelogram, as shown
left-hand side of Eq.~28!, or even to make a string representation out of a quotient of a sub
allelogram, as shown on the right-hand side of that figure.
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~28!

Thus, we can claim that
Proposition 3: A subquotient of a subrepresentation of the parallelogram Vm,2n;r (i.e., the

quotient of two subrepresentations of the parallelogram Vm,2n;r ) is indecomposable, provided tha
its graph is connected.

Proof: Let i , j uniquely label a minimal set of initial vectorsXi , j ,r5(p1) i(p2) j (x r) ^ v0

^ w0) of weight r 1 i 2 j in such a representationV. Because initial vectors cannot have the sa
weight, the elements in the set$Xi , j ,k% can be ordered by increasing weight. These initial vect
are also those of a subrepresentation of the parallelogramVm,2n;r . Let V5V1% V2. Using the
p1p2 triangularity argument, the vectors generated from an initial vector all belong to the
subspace, eitherV1 or V2, depending on whether the initial vector is inV1 or V2. However, the
subspaces generated by two consecutive initial vectors must have a nontrivial intersecti
otherwise the graph would be disconnected~into the vectors in or above the higher subspace
the vectors in or below the lower subspace!.

By the p1p2 triangularity argument, each weight space in this intersection must belon
only one of V1 or V2. Thus, the subspaces generated by two consecutive initial vectors
belong to the same subspace, and, continuing this way, all subspaces must belong to th
subspace, sayV1. This means thatV2 is empty and we are done. h

The last noteworthy result on quotients of subparallelograms is as follows:
Proposition 4: Given a (connected) string representation, there exists a subquotient

parallelogram which is isomorphic to this string.
Proof: In the string representation, letm be the number of up arrows,n the number of down

arrows, and constructVm,2n;r , with r adjusted so that the highest weight ofVm,2n;r is equal to the
highest weight of the string, i.e.,m1r . If the topmost arrow of the string is a down arrow then t
highest weight state of the representation,x r ^ vm^ w0 is the heaviest initial vector of the subrep
resentation. Otherwise, the initial vectors are ‘‘sources’’ of the type

unless the bottom-most arrow of the string is an up arrow, in which case the lightest initial v
is the lowest weight vector of the representation,x r ^ v0^ w2N . The heaviest initial vector, for
instance, is always of the formx r ^ v l ^ w0. Next, we note that terminal vectors are either high
or lowest weight vectors or ‘‘sinks’’ of the type

If the topmost arrow in the string is a down arrow, thenx r ^ vn^ w0 is an initial vector; if the
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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bottommost arrow is an up arrow, thenx r ^ v0^ w2m is an initial vector. For each ‘‘source,’’ a
described above,V has an initial vectorx r ^ vk^ w2 l , wherem2k is the number of up arrows
above the source andn2 l is the number of down arrows below it.

Having identified the initial vectors, one then constructs the corresponding subreprese
V of Vm,2n;r . Consider now the subrepresentationV8,V obtained by applying the operato
p1p2 to V, i.e., V85p1p2(V). The original string is the subquotientV/V8. h

IV. GLUING

Not all representations need be quotients or subquotients of parallelograms. For ins
consider the representation

⇒p7:~R~u!,z!°1
eiu z 0 0 0 0

0 1 0 0 0 0

eiuz̄ zz̄ 1 e2iuz e2iuz e22iu 1
2z

2

0 z̄ 0 e2iu 0 0

0 0 0 0 e2iu e22iuz

0 0 0 0 0 e22iu

2
~29!

with dim(W1)51, dim(W0)5dim(W21)52, dim(W22)51. It is constructed by identifying the
terminal vector of the 232 parallelogram representation of Eq.~17! with the terminal node of an
extra two-element raising string ending at the terminal node, i.e., by ‘‘gluing’’ the parallelog
and the raising string at one node in the manner indicated by the graph.

Claim: The representationp7 is indecomposable.
Proof: Otherwise supposeV5U % U8 is a nontrivial decomposition. We can assumeU con-

tains the weight spaceW22. In this case, it also contains the standard basis vectorsê5

5(0,0,0,0,1,0)T and ê45(0,0,0,1,0,0)T. But this last vector is the ‘‘terminal node’’ of the sub
space which is isomorphic top5, and the argument given in connection to this representa
shows that eitherU or U8 must contain all of this subspace. Since we have already seen thU
must containe4, it must contain all of thep5 subspace, and therefore must be all ofV. h

This can be generalized to other more complicated examples. For instance, the represe

~30!

can be realized as shown as a two-point gluing. Note that the factors of 2 in the graph indica
the corresponding matrix element is of strength 2 rather than 1, as has been thus far a
throughout this paper. The representationp8 can also be shown to be indecomposable.

Not all gluings are indecomposable. The representation of Fig.~53!, which is obtained by
gluing together two strings, is decomposable, as will be seen in Sec. VII.
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V. EXPLICIT REALIZATIONS

In this section, we would like to exhibit some of the more interesting amongst the m
explicit realizations of thee(2) algebra, along with examples of the kind of representations
we have so far described.

Nonunitary representations occur in physics mostly as representations carried by tens
erators. Thus, ifT̂i

l is thei th component of a tensor operatorT̂l transforming by the representatio
l, and if O is a representation of an element ofe(2) by linear operators, then the action ofO on
T̂l is given by

O:T̂i
l°@O,T̂i

l#5(
j

a i j T̂ j
l , ~31!

wherea i j are, in general, complex coefficients.

A. The adjoint representation

Let,

p1° 1
2e

2 iuS ]

]r
2

i

r

]

]u D , p2° 1
2e

iuS ]

]r
1

i

r

]

]u D , l 0° i
]

]u
. ~32!

If we let these operators act on one another, we obtain the adjoint representation ofe(2), with
the graph given in Eq.~14!.

B. Raising string or lowering string representations

Let

p1°eiu
]

]r
, p2°0, l 0°2 i

]

]u
, ~33!

and consider the set of polynomials$eikur q,ei (k11)ur q21,ei (k12)ur q22, . . . ,ei (k1q)u%, with k
PZ,qPZ1.

Using Eq. ~31! and the realization of Eq.~33!, one sees that these polynomials carry
representation equivalent to a raising string representation of dimensionq11 with lowest weight
k.

Similarly, the realization

p1°0, p2°e2 iu
]

]r
, l 0°2 i

]

]u
, ~34!

action on the polynomials$einur q,ei (n21)ur q21, . . . ,ei (n2q)u%, with nPZ,qPZ1, is a lowering
string representation of dimensionq11 with lowest weightn2q.

We obtain a less trivial example if we let the operators of Eq.~32! act on the polynomials
$r teitu,r t21ei (t21)u, . . . ,1%, which yields a raising string representation with highest weight ve
r teitu of weight t.

In a similar way, the polynomials$r te2 i tu,r t21e2 i (t21)u, . . . ,1% span a lowering string rep
resentation ofE(2) under the action of the operators of Eq.~32!.

C. Parallelograms

Consider the three operators

p15
]2

]x2 12i
]2

]x]y
2

]2

]y2 5
]2

]w̄2
,
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p25
]2

]x2 22i
]2

]x]y
2

]2

]y2 5
]2

]w2 , ~35!

l 052
i

2 S x
]

]y
2y

]

]xD5w
]

]w
2w̄

]

]w̄
. ~36!

With the identificationp6↔Q̂62 ,l 0↔ 1
2 l̂ z , these are easily recognized as forming ane(2) sub-

algebra of@R#5so~3!, the algebra of the rigid rotor.
We now consider the operators

X̂LM5A2L1M~L1M !! ~L2M !!L!

~2L !! (
t

v tṽ t2MzL1M22t

2tt! ~ t2M !! ~L1M22t !!
, ~37!

which can be recognized as proportional to the spherical harmonics

YLM~u,w!5A~2L11!!

4p2LL!
X̂LM ~38!

if we make the identifications

v5
2eiw sinu

A2
, z5cosu, ṽ5

e2 iw sinu

A2
. ~39!

In general, we have

@p6 ,X̂LM#5aLMX̂L22,M62 , ~40!

with

aLM5^X̂L22,M62up6uX̂LM&, ~41!

with the upper and lower sign valid forp6 , respectively, and where the numb

^X̂L22,M62up6uX̂LM& is computed using the standard boson inner product. With these we can
a variety of parallelograms.~Note that thee(2) weight is 1

2M .)
Thus, for instance, the set of nine operators$X̂80,X̂6,62 ,X̂4,64 ,X̂40,X̂2,62 ,X̂00% are the com-

ponents of a tensor which carries the parallelogram representationV2,22,0 with

^X̂L22,M62up6uX̂LM&5A~2L11!L~L21!

2L23
~L,M ;2,62uL22,M62!, ~42!

where (L,M ;2,62uL22,M62) is an SO~3! Clebsch–Gordan coefficient.
Similarly, the set$X̂71,X̂51,X̂5,23 ,X̂33,X̂3,21 ,X11% are the six components of a tensor whi

carries the parallelogram representationV2,21;1.
Subparallelograms of these or of any parallelogram are obtained by simply removing fro

original parallelogram all the basis polynomials not contained in the subrepresentations.
It is also possible to obtain parallelograms from the realization of Eq.~32!. Repeated action o

these operators on the initial vectorr peinu produce the parallelogram representati
V(1/2)(p1n),2(1/2)(p2n);n . Note that, since1

2(p1n) and 1
2(p2n) must be integers,p1n must be

even for the representation to remain finite dimensional.
The realization of Eq.~32! is a special case of the more general realization
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p1°r xei (x21)uS ]

]r
2

i

r

]

]u D ,p2°r 2yei (y11)uS ]

]r
1

i

r

]

]u D ,

l 0° i
~x2y22!

2~x21!~y11!

]

]u
1

~x1y!

2~x21!~y11!
r

]

]r
, ~43!

from which we can extract various parallelograms.~The exponentsm,n of the initial vectorr meinu

must satisfy some conditions if the representation is to remain finite dimensional.!

D. Quotients and strings

Consider now the realization

p1°eiu
]2

]r 2 , p2°e2 iu
]

]r
, l 052 i

]

]u
. ~44!

Acting on the initial vectorr 4 to generate a parallelogram, and removing from this parallelog
the basis statesr 4 and r 3e2 iu, we obtain the string representation

⇒p9:~R~u!,w!°1
e24iu w̄e23iu 1

2w̄
2e22iu 0 0 0 0

0 e23iu w̄e22iu 0 0 0 0

0 0 e22iu 0 0 0 0

0 0 we22iu e2iu w̄ 1
2w̄

2eiu 0

0 0 0 0 1 w̄eiu 0

0 0 0 0 0 eiu 0

0 0 0 0 0 weiu e2iu

2,

~45!
spanned by the basis states$e2iu,eiur 2,r ,e2 iu,e22iur 2,e23iur ,e24iu%.

A nice feature of this string is that it represents an example of aZ3 graded-contraction of su~2!
into e(2), asdiscussed in Ref. 4. The grading is generated by the SO~2! subgroupe(2p/3)l 0. The
carrier spaceV decomposes intoV5V0% V1% V2, which contain the basis states

V05$r ,e23iur %, V15$eiur 2,e22iur 2%, V25$e2iu,e2 iu,e24iu%, ~46!

while the basis elements of Eq.~44! have grades 1, 2, and 0, respectively.

VI. TENSORING TWO RAISING OR TWO LOWERING STRINGS

In Sec. III A, we considered the tensoring of a raising and a lowering string represent
The resulting parallelogram, as well as all its subrepresentations and ‘‘connected’’ subquo
were shown to be indecomposable.

The next simplest example of tensor product is the product of two raising or two lowe
string representations. This yields a tensor product representation that is always decomposa
a sum of raising or lowering string representations. The decomposition is closely related
decomposition of SU~2! tensor products.

In this section, we discuss only the tensor product of two raising string representations
the case of two lowering strings is handled in the exact same way.

A. Raising strings as contractions of su „2… irreps

Consider the su~2! algebra spanned by the operators$L1 ,L2 ,L0%, with the usual nonzero
commutation relations

@L0 ,L6#56L6 , @L1 ,L2#52L0 . ~47!
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If we now rescale the su~2! generators to

L2→L25eL2 , L1→L15L1 , L0→L05L0 , ~48!

express the su~2! commutation relations in terms of theL generators, and take the limit ase
→0, we see that

@L1 ,L2#5 lim
e→0

e@L1 ,L2#5 lim
e→0

e2L05 lim
e→0

2eL050,

~49!

@L0 ,L2#5 lim
e→0

e@L0 ,L2#5 lim
e→0

2eL252L2 ,

with the commutator@L1 ,L0# remaining unchanged from the su~2! commutator. We recover the
algebrae(2) by the identificationL65p6 ,L05 l 0, but, because the generatorsL2 andL1 have
been treated asymmetrically, the resulting representation cannot be unitary.

This is an example of a contraction.2 The more familiar example of rescaling, whereL2 and
L1 are treated on the same footing and both multiplied by the scale factor«, leads to unitary
infinite dimensional representations. Coming back to Eq.~49!, suppose that we are given a sta
dard unitary representationG j of the su~2! algebra, of dimension, say, 2j 11. The effect of taking
the e→0 limit of the asymmetric scaling is to leave matrix elements ofL15L1 and L05L0

unchanged, while setting to 0 the matrix elements ofL25eL2 . The resulting representation
wherep25L250 everywhere but wherep15L1 acts by raising the weight of the su~2! states,
is clearly equivalent to a (2j 11)-dimensional raising string representationg j . The equivalence
relation just rescales the nonzero su~2! matrix elements ofL1 to the standarde(2) matrix ele-
ments ofp1 , which are 1. Thus, we can write, for a raising string representation

g j5 lim
e→0

G j . ~50!

The lowest weight ofg j is 2 j . A general raising string representationg j ;k of dimension 2j 11
with lowest weight2 j 1k can be obtained by twistingg j by a characterxk .

~Note that one can obtain a lowering string representation from an su~2! representation by
scalingL1→L15eL1 and leaving the other two generators unchanged.!

The advantage of introducing limits in such a fashion is that one can then think of ra
string representations as smooth deformations of su~2! representations.

B. Decomposing tensor products of two raising strings

First, recall that the tensor productj 1^ j 2 of two su~2! representationsj 1 and j 2 of dimensions
2 j 111 and 2j 211, respectively, decomposes into a sum of su~2! representations of dimensio
2 j 11, with possible values ofj given byu j 12 j 2u,u j 12 j 2u11,u j 12 j 2u12, . . . ,j 11 j 2, and where
each value ofj allowed by the inequality occurs exactly once.

Proposition 5: The tensor product of two raising string representationsg j 1 ;r 1
^ g j 2 ;r 2

of

dimensions2 j 111 and 2 j 211, respectively, decomposes into a sum of raising string repre
tations. The representations occuring in this tensor product have the dimensions2 j 11, where j
takes the possible valuesu j 12 j 2u,u j 12 j 2u11,u j 12 j 2u12, . . . ,j 11 j 2, and where each value of
allowed by the inequality occurs exactly once.

Proof: Write
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g j 1 ;r 1
^ g j 2 ;r 2

5x r 1
^ ~ lim

e→0
G j 1

! ^ x r 2
^ ~ lim

e→0
G j 2

!

5x r 11r 2
^ ~ lim

e→0
G j 1

^ G j 2
!

5x r 11r 2
^ S lim

e→0
(

j
G j D , u j 12 j 2u< j < j 11 j 2 ,

5x r 11r 2
^ S (

j
g j D ,

5(
j

g j ;r 11r 2
. ~51!

h

Note that, because the limiting process by which we transform the su~2! irrep into ane(2)
representation is smooth, i.e., because it is possible to define a sequence of su~2! representations
parametrized bye such that the limit whene→0 of this sequence corresponds to a raising str
representation, it is possible to interchange the process of taking the limit with the proce
taking the tensor product.

One may further remark that this limiting process cannot be used to analyze parallelo
representations, since those correspond to tensor products of a raising and a lowering
representations, i.e., a tensor product of ‘‘different’’ contractions.

VII. ACYCLIC REPRESENTATIONS AS SUMS OF STRINGS

The decomposition of the tensor product of two raising or two lowering representation
special case of a more general theorem regarding ‘‘acyclic’’ representations, i.e., represen
containing no ‘‘cycles’’ of the form

An algebraic characterization of such acyclic representations is that the operatorp1p2 is 0
everywhere. The main result of this section is that acyclic representations are always deco
able into sums of string representations.

Definition: A finite-dimensional representationV of E(2) is said to beacyclic if p1p250 on
V.

Clearly a string is acyclic, by Proposition 1. For that matter, a direct sum of strings mu
acyclic. The goal of this section is to prove the converse: that any acyclic representation m
a direct sum of strings. We begin by establishing some machinery.

We need first a concept which is not restricted to acyclic representations, that of a ‘‘ch
We define a ‘‘chain’’ to be a finite sequence of strictly increasing weight vectorsv r ,v r 11 ,...,vs

in V, where eachv j has weightj, and such that for eachr< j ,s, either p1(v j )5v j 11 or
p2(v j 11)5v j .

Thus, for instance, in the 232 parallelogram representation of Eq.~17!, which is not acyclic,
there are infinitely many chains, each containingv1^ w0 and v0^ w21 but each containing as
middle element an otherwise arbitrary nonzero linear combination ofv0^ w0 andv1^ w21.

Specializing now to acyclic representations, we see that the conditionp1p250 implies that
it is not possible to have bothp1(v j )Þ0 and p2(v j 11)Þ0. A chain is ‘‘maximal’’ if it cannot be
extended by including additional vectors~necessarily at the top or the bottom!. The space spanne
by the vectors in a maximal chain is a subrepresentation ofV, necessarily a string.
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Begin by observing that any weight vector can always be embedded in a maximal chai
it is always possible to find a maximal chain which contains a specified weight vector. Su
that we have already definedN maximal chains,

v r 1

1 ,v r 111
1 , . . . ,vs1

1 ;

v r 2

2 ,v r 211
2 , . . . ,vs2

2 ;

. . . ~52!

. . .

v r N

N ,v r N11
N , . . . ,vsN

N .

Note that we have displayed the chains horizontally rather than vertically for convenience
chains need not all start nor end at the same weight nor all have the same length. Suppose t
are ‘‘fully independent,’’ in the sense that the vectors$v i

m% form a linearly independent set. Not
that if v is any vector in the ‘‘span’’ of theN chains, i.e., the space spanned by the vectors$v i

m%,
thenp1(v) andp2(v) are also in the span of these chains, again because of the assumptio
p1p250.

As an inductive step, we have to show how to findN11 fully independent maximal chains i
V. It will be fruitful to illustrate the various steps of the induction with the following exampl

~53!

This representation is found by gluing the string representations containing$h4 ,h3 ,h2 ,h1 ,h0%
and $j3 ,j2 ,j1 ,h0% at the common nodeh0. In the example, we assume thatN51 and that the
first maximal chain inp10 contains$v4

15h4 ,v3
15h3 ,v2

15h2 ,v1
15h1 ,v0

15h0%.
Let k be the highest weight for which thekth weight space is not spanned by the vect

$vk
m :m51,...,N% that lie in thekth weight space of the firstN chains.~In p10, we havek53.!

If there is a vectorv in thekth weight space which satisfiesp1(v)50 but which is not in the
span of the$vk

m%, we will choose it as the top vector in a new chain. Because the (k11)th weight
space is by construction contained in the span of theN chains, the action ofp2 on vectors in the
(k11)th weight space must also take them into the span of theseN chains, so thatv cannot be in
the image ofp2 .

The other possibility is that everyv in the kth weight space which is not in the span of th
$vk

m% satisfiesp1(v)Þ0. Choose such av. But the intersection of the (k11)th weight space with
the image ofp1 is spanned by the vectors$p1(vk

m)%. It is therefore possible to find a~nonzero!
vector of the formv85v2(cmvk

m satisfyingp1(v8)50; sincev8 is not in the span of the$vk
m%,

this is a contradiction.
In the example, this first step could yieldv3

25j3 as the top state of the second chain inp10.
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Having found the top vector for a new chain,vsN11

N11 , with sN115k, we can attempt to con

struct the rest of the chain inductively by extending it from below.
Suppose we have constructed a chainvsN11

N11 , . . . ,v l 11
N11 ,v l

N11 so that it and the originalN

maximal chains form a fully independent set, in the sense defined above.
If p2(v l

N11)50, and ifv l
N11 is not in the image ofp1 , then we have constructed a maxim

chain, withr N115 l , completing the inductive step. In all other cases, it necessary to perfor
induction to extend the chain.

In general, the situation is that the induction leaves us with the possibility of constru
N11 fully independent chains, none of which can be extended at the ‘‘top,’’ meaning tha
eachm51,...,N11, p1(vsm

m )50 andvsm

m is not in the image ofp2 . At least one of the chains is

nonmaximal; we will assume that the (N11)th chain is nonmaximal, with lowest weightl , and
that l is the maximum of the lowest weights of the nonmaximal chains.~Note that, although the
(N11)th chain has so far only been extended as low as weightl , it is, by assumption, not
maximal and can therefore certainly be extended belowl .! Let L be the number of nonmaxima
chains with lowest weightl .

We will produceN11 chains, none of which can be extended at the top, so that the nu
of nonmaximal chains with lowest weightl is strictly less thanL, and so that none of the chain
are nonmaximal with lowest weight greater thanl . Induction onL will then allow us to construct
N11 chains so that any nonmaximal chains among them have lowest weight belowl , and,
continuing in this way, we can produceN11 maximal chains.

If p2(v l
N11)50 andv l

N115p1(v9), for some weight vectorv9 of weight l 21, then choose
such av9 and letv l 21

N115v9. Note that the resulting chain and the chains labeled 1 toN still form
a fully independent set, becausev l 21

N11 cannot possibly be in the span of the chains labeled 1 toN,
sincep1(v l 21

N11)5v l
N11 is not in thoseN chains. Extending the (N11)th chain by addingv l 21

N11

gives a chain which has lowest weightl 21, which reduces the number of nonmaximal cha
with lowest weightl and completes the inductive step in this case.

If p2(v l
N11) is nonzero but linearly independent of$v l 21

1 ,v l 21
2 ,...,v l 21

N %, then let v l 21
N11

5p2(v l
N11). The resulting (N11)th chain and the originalN maximal chains still form a fully

independent set, and the (N11)th chain has lowest weightl 21, which completes the inductive
step in this case.

In the example ofp10, these two situations occur. Starting with the top vectorj3, we see that
p2j350 but thatp1j25j3, so that the chain containingj3 can be extended to includej2. Since
p2j25j1, which is linearly independent ofh1, the vector of weight 1 which is in the firs
maximal chain, we can again extend the chain containing$j3 ,j2% to include j1. However,
p2j15h0, which is already in the first maximal chain. We therefore havel 51. The second chain
contains$j3 ,j2 ,j1%, and it is not maximal.

It could be, ~as in the case withj1 in p1), that p2(v l
N11) is in the span of

$v l 21
1 ,v l 21

2 ,...,v l 21
N %. Suppose

p2~v l
N11!5 (

m51

N

amv l 21
m 5 (

m51

N

amp2~v l
m!. ~54!

~The last equality holds because a linear combination of vectors from theN chains that is in the
image ofp2 must be the image underp2 of a linear combination of vectors from theN chains,
because of our assumption thatp1p250.) Then letaN11521 and consider the vector

ul52v l
N111 (

m51

N

amv l
m5 (

m51

N11

amv l
m . ~55!

It satisfiesp2(ul)50. Note that, althoughv l
N11 is not in the image ofp1 , this is not necessarily
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true oful . Reordering if necessary, we can assume thatul5(m51
N0 amv l

m , with 1<N0<N11 and
amÞ0, p2(v l

m)Þ0, for 1<m<N0 ~i.e., we reorder so that the firstm coefficients inul are
nonzero.!

In the example ofp10, Eq. ~55! produces the vectoru152j11h1, which is not in the first
~maximal! nor in the second~nonmaximal! chain. There is no reordering necessary asu1 is a
linear combination of the two vectors in the first and second chains, i.e.,a1 ,a2Þ0, so thatN0

525N.
The situation is as follows. We haveN11 ‘‘bottom’’ vectors;ul and the bottom vectors of th

original N maximal chains. We haveN11 top vectors and the subspace spanned by the vecto
the N11 chains, but no chains containingul . It is then a matter of reorganizing the states in t
subspace so as to replace one of the existingN11 chains with one that containsul . First we
construct a chain containingul . There is a unique integerm1> l so that (p1)m12 l(ul)Þ0 and
(p1)m12 l 11(ul)50; let ui5(p1) i 2 l(ul), for l< i<m1.

In the example ofp10, this integer ism153 since it is possible to actm12 l 532152 times
on u152j11h1 before getting (p1)3(2j11h1)50. Thus we haveu152j11h1 ,u25h2 ,u3

5h3.
Reordering the chains if necessary, we can assume thatum1

5(m51
N1 amvm1

m , with amÞ0 when-

ever 1<m<N1, for someN1<N0. ~In p1, we haveN151 sinceu3 can be expressed as a line
combination of a single vector.!

If um1
is not in the image ofp2 , then the chainul ,...,um1

cannot be extended further at th
top; it is a ‘‘raising chain.’’ If um1

is in the image ofp2 , then it is possible to add a ‘‘lowering
chain’’ above it. Indeed, in this case there is somen1>1 so that

~p2! i 2m1S (
m51

N1

amv i
mD 5um1

, ~56!

for all i with m1< i<n1, and so that(m51
N1 amvn1

m is not in the image ofp2 . For all i with m1

< i<n1, let ui5(m51
N1 amv i

m . These vectors form a lowering chain.
In the example ofp10, we haven154 sincep2h45h35u3. The chain now containsu15

2j11h1 , u25h2 , u35h3 , u45h4 .
We continue in the same way, finding positive integersN0>N1>N2>•••>Nt and integers

l 5m05n0<m1,n1,m2,n2,•••,m t<n t ; making a suitable rearrangement of theN11
chains; and for each 1< j <t, and for eachi with n j 21< i<m j , letting

ui5~p1! i 2n j 21~un j 21
!, ~57!

and for eachi with m j< i<n j , letting

ui5 (
m51

Nj

amv i
m , ~58!

so that for eachi with m j, i<n j ,

p2~ui !5ui 21 . ~59!

In this way we have constructed a lowering chain between eachm j andn j . Because

p1~ui !5ui 11 , ~60!

for eachi with n j 21< i ,m j , j 51,...,t, there is a raising chain between eachn j 21 andm j .
In the example ofp10, we havet51, as there is only one raising and one lowering chain

be glued to the vectoru152j11h1. Our process therefore stops atn154.
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We can continue the construction until we reach a point wherep1(un t
)50, so the chain

cannot continue up to higher weights. Note that for

un t
5 (

m51

Nt

amvn t

m ~61!

to be in the kernel ofp1 , it must be true thatp1(vn t

m)50, for each 1<m<Nt . And if un t
is not

in the image ofp2 , then at least one of the vectorsvn t

m , for 1<m<Nt , must not be in the image

of p2 . Renumbering yet again, if necessary, we can assume that this is true form51, which
means thatn t is the highest weight of the chain$v i

1%.
In the example ofp10, we haveu45h4 as the top vector;h4 is in the kernel ofp1 and not

in the image ofp2 . Thus, with the renumbering, the chain$u4 ,u3 ,u2 ,u1% becomes the first chain
The vectorsul ,ul 11 ,...,un t

form a chain. They all lie in the span of the linearly independ

vectors making up theN11 chains$v i
m%, for m51,...,N11. Sincep2(ul)50, eitherul is not in

the image ofp1 , in which case the chain$ul ,ul 11 ,...,un t
% is maximal, orul5p1(ul 21), for

some weight vectorul 21 of weight l 21. It can be added to produce a longer cha
$ul 21 ,ul ,ul 11 ,...,un t

%. Observe thatul 21 cannot be in the space spanned by the cha

$v i
1%,...,$v i

N11%. We have constructed a chain$ui%; in one case it is maximal, and in the other
has lowest weightl 21.

In the example ofp10, the chain is maximal sinceu152j11h1 is not in the image ofp1 .
Since every one of the vectorsui , for i> l , contains a nonzero component in what is no

labeled as the first chain$v i
1%, we can replace the chain$v i

1% with the chain$ui% and the resulting
N11 chains will still be fully independent.

At this point there are different possibilities. One is that the chain labeled$v i
1% that was

removed was the original nonmaximal chain$v i
N11%, and it has just been replaced by the cha

$ui%. This does not apply top10; the original second chain is not identical to the newly co
structed maximal chain.

Otherwise, the original nonmaximal chain$v i
N11% with lowest weightl is still present. In this

case we can change its label back tov l
N11,...,vsN11

N11 . But nowp2(v l
N11) is not in the span of the

vectors in the otherN chains, sincep2(v l
1) is no longer present in the otherN chains. This means

that the (N11)th chain can be extended to includep2(v l
N11) as its ‘‘bottom’’ vector.

In the example ofp10, this is what happens. The original second chain contained$j3 ,j2 ,j1%.
Sincep2j15h0, which is no longer in the span of the newly constructed first maximal chain
can extend this second chain to includeh0.

In either case, the number of nonmaximal chains with lowest weightl has been reduced.
In the example ofp10, we now restart the induction with$h4 ,h3 ,h2 ,2j11h1% as the first

maximal chain and$j3 ,j2 ,j1 ,h0% as the second chain, we find that nowk53, N51 but l 50.
However,p2h050 andh0 is not in the image ofp1 . Thus, the second chain is maximal as it
This concludes the inductions: we have found the decomposition ofp10 as the sum of two strings

Theorem 1: A finite-dimensional representationV of E(2) is acyclic if and only ifV is a
direct sum of indecomposable representations, in each of which the weight spaces are
dimension 1.

Proof: (⇐) Trivial.
(⇒) The above argument shows that, givenN fully independent maximal chains that do n

span all ofV, it is possible to constructN11 fully independent maximal chains.
In attempting this construction, we may reach a situation where there areN11 fully inde-

pendent chains, but not all of them are maximal. We letl be the maximum of the lowest weight
of the nonmaximal strings. The inductive step described above reduces the number of nonm
strings with lowest weightl . Repeated application of this procedure will eventually reducel , the
maximum of the lowest weights of the nonmaximal strings.

Continuing with an induction onl , we can eventually eliminate all the nonmaximal chai
producingN11 fully independent maximal chains, as required.
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Then, since the number of fully independent chains is certainly bounded by the dimens
the whole spaceV, we will eventually be able to construct enough chains that they span the w
space. h

VIII. DISCUSSION AND CONCLUSION

In this paper, we have described numerous finite dimensional indecomposable represen
of E(2) by means of a method which encapsulates in graphical form all the necessary inform
to explicitly construct, up to a character, a representation.

The basic type representation is the string, in which all the weight subspaces are of dim
one. Using lemma 1 and proposition 1, we can associate to a string representation a grap
which it is easy to determine if the representation is decomposable or not. In an indecomp
string representation, the ‘‘strength’’ of thee(2) matrix element connecting two states is irre
evant; all indecomposable strings representations are equivalent to representations for wh
matrix element is 1.

We have been successful in showing the indecomposability of another very important cl
representations, the parallelograms and all their subrepresentations and quotients. Paralle
and their subrepresentations may contain nontrivial weight multiplicities, an unusual featu
representations ofE(2). Wehave also shown how acyclic representations can be decompose
sums of string representations.

The problem of decomposing a general graph containing nontrivial weight multiplicities
ing either per se or as from the tensor product of two general string representations is diffi

Consider for instance the acyclic graph

~62!

with basis states$j,w,z,c%, in which p1w5ac, with all other nonzero matrix elements being
When a521, the representation decomposes into a sum containing two~inequivalent! two-
dimensional subrepresentations.

When aÞ21, however, this can be decomposed into a sum of a three-dimensional
one-dimensional string. The special case wherea51 corresponds to a tensor product of t
two-dimensional raising string with itself.

The decomposability of some graphs can be understood in terms of representations ofSn , the
permutation group ofn objects. Unfortunately, arguments based on the permutation group a
limited use because~i! the Sn-invariant subspaces may themselves decompose further~for in-
stance, in the tensor product of a three-dimensional raising string with itself, the six-dimen
subspace that carries the fully symmetric representation ofS2 can be divided into a five-
dimensional and a one-dimensional indecomposable raising string!, ~ii ! experience has shown tha
the problem of deciding if a given graph~string or otherwise! can be obtained by tensoringn
copies of a given string is nontrivial.

There is, however, one case which we would like to mention. Consider the tensor prod
an indecomposable stringV, with a basis of weight vectorsv l , . . . ,vm with l<m, with another
indecomposable stringV8 With weight vectorsv2m8 , . . . ,v2 l8 such thatp1v2k218 5v2k8 if and
only if p1vk5vk11 andp2v2k8 5v2k21 if and only if p2vk115vk . The tensor productV^ V8 is
decomposable into two parts, one of which is the one-dimensional indecomposable represe
with basis vectorv5(k5 l

m(21)kvk^ v2k8 , becauseV8 occurs when we tensor together (l 2m
21) copies ofV.
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The simplest example of this is found in~63!.

~63!

In this example,V^ V8 decomposes into an eight-dimensional representation isomorphic to~30!
and a one-dimensional subspacev5v0^ v082v1^ v218 1v2^ v228 . Note that, obviously, the
weights ofV8 could be shifted up or down and the tensor product would still be decompos
What is important is the relative positions of the arrows, not the actual weights.

This family of decomposable tensor products can be related to the symmetric group a
lows. It can be shown that, if the dimension ofV is d, then the (d21)-fold tensor product ofV
with itself contains, up to a character,V8 in the Sd21-invariant subspace labeled by a Youn
tableau containing a single column ofd21 boxes.

In the example of~63!, V is of dimensiond53, and a basis for the three-dimensional rep
sentation ofV^ V which carries theS2 representation labeled by 1 column of 2 boxes is given

v228 5x23^ detUw1 x1

w0 x0U , v218 5x23^ detUw2 x2

w0 x0U , v085x23^ detUw2 x2

w1 x1U , ~64!

wherewi ,xj ,i , j 50,1,2 are basis states for the first and second copy ofV in the tensor product
V^ V, respectively. The representationV8 can be reconstructed if we observe that the nonz
matrix elements ofp6 are given by

p1v228 5x23^ detUp1w1 p1x1

w0 x0
U1detU w1 x1

p1w0 p1x0
U5x23^ detUw2 x2

w0 x0
U5v218 ,

~65!

p2v085x23^ detUp2w2 p2x2

w1 x1
U1x23^ detU w2 x2

p2w1 p2x1
U5x23^ detUw2 x2

w0 x0
U5v08 .

From this, it can be seen how the decomposition ofV^ V8 is related to the action of symmetri
group on (V)d, and why the scalarv is alternating in nature.

Finally, even if all the examples of decomposable tensor products discussed in this pap
ultimately be related to the symmetric group, we believe that there very likely exist decompo
graphs with nontrivial weight multiplicities which are unrelated toSn . We have, unfortunately
been unable to isolate a provable conjecture on this matter. The low-dimensional examples
section are sufficiently complex to illustrate the difficulty of the general problem.

In a subsequent publication, we will investigate the role of gluings of the type found in~30!
in the construction of finite dimensional representations.

There is no doubt that results similar to Lemma 1 and Proposition 1 can be extended to
groups,5 in particular within the context of graded contractions.4 It is also reasonable to expect th
the method can be generalized to the construction of finite dimensional representations o
semidirect product groups. In that regard, one should observe that the operatorp1p2 is in fact, the
e(2) Casimir operator, so that one way of generalizing the concept of string representati
other groups is to require that the appropriate Casimir be 0. It remains to see how other co
such as parallelograms, can be generalized to other examples.
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