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Clebsch–Gordan coefficients in the asymptotic limit
Hubert de Guisea) and David J. Rowe
Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

~Received 24 March 1997; accepted for publication 12 September 1997!

We investigate the graded structure of the tensor product spaceVl2^ Vl1, which
arises in the coupling of two irreducible representationsl1 andl2 of a semisimple
Lie algebraG , in the limit in which one of the highest weights becomes asymp-
totically large. The construction of asymptotic coupling coefficients is considered.
© 1998 American Institute of Physics.@S0022-2488~98!01002-0#

I. INTRODUCTION

It is known that every unitary irreducible representation~unirrep! of a compact semisimple
Lie group is characterized by a highest weightl5(l1,l2,l3, . . . ). Often, the unirreps of physi-
cal interest of noncompact semisimple Lie groups are likewise characterized by extremal~highest
or lowest! weights.

In this paper, we consider the tensor productVl2^ Vl1 of modules for two unirreps of highes
weightsl1 andl2 of a semisimple Lie algebraG in the limit in whichl1 becomes asymptotically
large.~A weight l is said to be asymptotically large if one or more of its components is asy
totically large.! We show thatVl2^ Vl1 is expressible as a sum of graded subspaces which c
representations of a subalgebraH,G , whereH is uniquely determined by specification of whic
components ofl1 are asymptotically large. We also show that the graded subspaces oVl2

^ Vl1 are simple products of graded subspaces ofVl1 andVl2. This factorization implies simple
expressions for the Clebsch–Gordan coupling coefficients ofG in the asymptotic limit.

Our motivation for studying asymptotic limits arises because the limiting process is gen
associated with group contractions. Thus if a noncompact group of interest is the asymptoti
of a compact group, one can determine, for instance, Clebsch–Gordan coefficients for th
compact group by taking the asymptotic limit of Clebsch–Gordan coefficients for the corres
ing compact group.

An interesting example of this procedure can be found in the work of W. T. Sharp.1 Sharp was
able to obtain formulas for various products of Bessel functions by considering them as co
tions of Legendre functions~see Ref. 2, Sec. 5.71!. The coupling coefficients for Bessel function
then emerged naturally as asymptotic limits of ordinary SO~3! coupling coefficients.

Our analysis is appropriate for the less ambitious task of computing some coupling c
cients involving one representation of a group and one representation of its contraction. Th
for such coupling coefficients arises in physics when quantum numbers become large. F
ample, it is well known, in nuclear physics, that the representations of su~3! approach those of the
noncompact rigid rotor algebra for large values of the su~3! highest weight.3 The asymptotic
properties of tensor product spaces are also needed for other purposes. For example, th
recently considered by Rowe and Repka4 in the construction of the coherent shift tensors of Fla
and Towber.5

The nontrivial unitary representations of a noncompact group are usually infinite dimens
even when their extremal weights are finite. To avoid confusion, we use the adje
‘‘asymptotic’’ rather than ‘‘infinite’’ to describe properties which approach infinity as one
many components of an extremal weight become large. Thus, in the asymptotic limit, the n
of basis states in a unirrep of a compact group becomes asymptotically large. Similarly,
chains of weights, which would be finite for finite highest weights, become asymptotic cha
the limit.

a!Present address: Centre de Recherches Mathe´matiques, Universite´ de Montréal, C.P. 6128 Succ. Centre-Ville, Montre´al,
Québec H3C 3J7, Canada.
10870022-2488/98/39(2)/1087/20/$15.00 © 1998 American Institute of Physics
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The paper is organized as follows. Sections II and III A, respectively, deal with the bas
grade space decompositions and provide definitions and examples of asymptotic represen
We give, in Sec. III B, results for highest weight states of semisimple compact Lie alge
starting with su~2! and followed by the general case of any semisimple compact rankN Lie
algebras~with N finite! in III C. In Sec. III D, the theory of the previous section is applied to t
Lie algebra su~3!. The main result on asymptotic Clebsch–Gordan coefficients is presented in
III E.

Although close in spirit to the corresponding compact cases, the results for the nonco
cases only apply to some of the representations appearing in the decomposition of the
product of two unirreps of the positive~or negative! discrete series. The results for noncompa
cases are specialized to sp(m,R! and presented in Sec. IV, starting with sp~1,R! and followed by
sp(m,R!.

Section V deals with the coupling of a finite dimensional, nonunitary representation
asymptotic unirrep.

II. GRADE-SPACE DECOMPOSITIONS

In calculating Clebsch–Gordan coefficients for a semisimple Lie algebraG , in a basis which
reduces a subalgebraH,G , one encounters a need to decompose tensor products ofG -invariant
spaces into irreducibleG - andH-invariant subspaces. Thus, ifVl is a module for a unirrep ofG
with highest weightl, we need to expressW5Vl2^ Vl1 as a sum

W5(
rl

Wrl5 (
rlgv

Wgv
rl , ~1!

wherer indexes the multiplicity ofG -invariant subspaces$Wrl% of highest weightl in W andg
indexes the multiplicity ofH-invariant subspaces of highest weightv in Wrl.

Such a decomposition is simplest whenH is a reductive subalgebra ofG containing the
Cartan subalgebraT and a subset of simple root vectors forG . The Lie algebraG can then be
expressed as a sum of graded subspaces

G 5(
k

G k , ~2!

in which H5G 0 is the zero-grade subspace andG 1 is theH-invariant subspace ofG containing
all simple root vectors not inH. It then follows that

@G k ,G l ##G k1 l . ~3!

This grading induces a corresponding gradingV5( lVl of any module for a representation ofG

with the property

G k :Vl→Vk1 l . ~4!

It will be convenient to introduce the notation@v# to denote the grade of a weightv. Of particular
importance is the highest grade subspaceV@l#

l , since it is the subspace ofVl containing the
highest weight state. This is because the highest grade subspaceV@l#

l of an irreducibleG -module
is an irreducibleH-module having the same highest weight.

We denote byWk,W the sum ofG -invariant subspaces ofW5Vl2^ Vl1 whose highest
weight states are of gradek. Let Wk5( l Wl

k be the grade-space decomposition ofWk so that

W5(
k

Wk5(
kl

Wl
k . ~5!

Wk can in turn be expressed as

Wk5(
rl

Wrl , @l#5k , ~6!
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whereWrl is as in Eq.~1! but the sum is restricted to highest weights which satisfy@l#5k, and

Wl
k5(

rl
Wl

rl5(
rl

(
gv

Wgv
rl , @l#5k ,@v#5 l , ~7!

whereWgv
rl is also as in Eq.~1! but the sum is now restricted by the condition@v#5 l .

The grade-space decomposition ofW is the first step towards obtaining the full decompositi
of Eq. ~1!. Moreover, if one already knows the Clebsch–Gordan coefficients for the subal
H, it is the most important step in the evaluation of asymptotic Clebsch–Gordan coefficien
as we show in the following, the subspacesWl

k acquire the very simple expressions

Wl
k→Vk2@l1#

l2 ^ V
@l1#2k1 l
l1 , ~8!

in suitable asymptotic limits. A consequence of Eq.~8! is that asymptotic Clebsch–Gordan coe
ficients forG can be reduced to Clebsch–Gordan coefficients forH.

III. COMPACT, SEMISIMPLE LIE ALGEBRAS

For a compact, semisimple Lie algebra, the highest weights are dominant integral~i.e., non-
negative and integer valued!. @For su~2! it will be convenient to follow the physics convention o
labeling irreps by the angular momentumj which can take integer or half-odd integer values. Th
the su~2! angular momentum is half the standard, integer-valued, weight.#

A. Asymptotic representations

We follow the convention of saying that a unirrep is asymptotic if its highest weigh
asymptotically large, and simply writel→` if one or more components ofl are asymptotically
large. We will denote byD15$a1 ,a2 , . . . ,aN ,aN11 , . . . ,aq% an ordered set of positive root
of G such that the firstN are simple, i.e.,$a1 , . . . ,aN% is a basis forD1 , and denote by
$e1 ,e2 , . . . ,eN ,eN11 , . . . ,eq% the corresponding root vectors.

If ak is a root andv is a weight, then we shall refer to the set of weights of the typev
1nak (n is an integer! that occur within the weight space of a given irrep as anak-string. An
ak-string can be labeled by its highest weight. Then, if anak-string has highest weight 2j , its
weights are those of an su~2! irrep of angular momentumj . An ak-string will be said to be
asymptotic if and only ifj→` asl→`.

Let D1 be expressed as the sum of two subsetsD15L11F 1 , defined as follows. A
positive rootakPD1 is an element ofL1 if the ak-string of weights through the highest weig
stateul& of Vl is an asymptotic string, whereas it is an element ofF 1 if the ak-string is not
asymptotic. Corresponding sets,D2 ,L2 , and F 2 , contain the negatives of the roots
D1 ,L1 , andF 1 , respectively.

If all the components ofl are finite, thenL15B andF 15D1 . Figure 1~b! is an example
of a representation of a rank 2 compact algebra wherel2, the second component of the highe
weightl, is asymptotically large. In Fig. 1~a!, a1PF 1 , while a2 and all the other positive root
belong toL1 . In a situation where all the components of the weight are asymptotically la
F 15B andL15D1 .

The separation ofD1 into subsetsD15L11F 1 leads to a grading ofG of the type given
in Eq. ~2!, in which H5G 0 contains a Cartan subalgebraT for G as well as all root vectors
whose roots are inF 1 andF 2 . The complementary nilpotent subalgebras

N 15 (
k>1

G k and N 25 (
k>1

G 2k ~9!

are spanned by root vectors whose roots are inL1 andL2 , respectively.
For example, for an asymptotic representation ofG = su~2!, N 65G 6 are the one-

dimensional algebras spanned byJ6 , respectively, andH is the Cartan subalgebra of su~2!
spanned byJ0. In the example of Fig. 1~a!, H is spanned byT , e1 , andf 1 while N 6 contain the
remaining positive and negative root vectors, respectively.
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Throughout this paper, we will assume that the Lie algebraG 5(kG k is graded such thatG 1

is spanned by simple root vectors$ei% for which the correspondinga i-chains are asymptotically
long in the limit wherel1→`. Thus L1 will always contain positive roots ofG that are
asymptotic for the irrepl1.

B. Highest grade subspaces of su „2…

The generators of su~2! satisfy the well-known commutation relations

@J0 ,J6#56J6 , @J1 ,J2#52J0 , ~10!

with matrix elements given by

J0u jm&5mu jm& , m5 j , j 21, . . . ,2 j ,

J6u jm&5A~ j 7m!~ j 6m11! u j ,m11& . ~11!

Lemma 1:The highest weight stateu j j & of an su~2! unirrep j appearing in the decompositio
of the tensor productj 2^ j 1 is given, whenj 2 is finite andj 1→`, by

lim
j , j 1→`

u j j &5u j 2 D& u j 1 j 1& , D5 j 2 j 1 . ~12!

Proof: Consider the state

u j j &5 (
m1m2

~ j 1 m1 ; j 2 m2u j j !u j 2 m2&u j 1 m1& . ~13!

Sincem11m25 j , we must havem15 j 1 ,m25 j 2 when j 5 j 11 j 2. There is then only one term in
the sum and the appropriate coupling coefficient is 1. Thus Eq.~12! holds trivially whenD5 j 2.

WhenD5 j 2 j 1Þ j 2, we have, in general, more than one term in the sum~13!. The equation

05@^ j 2m2u^ j 1m1u#L1u j j &5 ~ j 1 m121; j 2 m2u j j !Aj 1~ j 111!2m1~m121!

1 ~ j 1 m1 ; j 2 m221u j j !Aj 2~ j 211!2m2~m221! ~14!

implies that the Clebsch–Gordan coefficients satisfy the equation

~ j 1 m121; j 2 m2u j j !

~ j 1 m1 ; j 2 m221u j j !
52Aj 2~ j 211!2m2~m221!

j 1~ j 111!2m1~m121!
, ~15!

FIG. 1. Example of the weight diagram of a unirrepl, with l2→`. ~a! Some roots of a rank 2 algebra;~b! An
asymptotically large irrep of this algebra.
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and hence that

~ j 1 j 12n; j 2 m2u j j !

~ j 1 j 12n11; j 2 m221u j j !
52Aj 2~ j 211!2m2~m221!

2n j12n~n21!
, ~16!

lim
j 1→`

~ j 1 j 12n; j 2 m2u j j !

~ j 1 j 12n11; j 2 m221u j j !
52 Aj 2~ j 211!2m2~m221!

2n j1
, ~17!

wheren is in the range 0<n<2 j 2. It follows that, forD, j 2,

lim
j 1→`

~ j 1 j 12n; j 2 m2u j j !

~ j 1 j 1 ; j 2 Du j j !
,

~21!n

An!
~2 j 1!2n/2@ j 2~ j 211!2D~D11!#n/2 . ~18!

The coupling coefficients are normalized such that

(
m1m2

u ~ j 1 m1 ; j 2 m2u j j !u251 . ~19!

This sum contains finitely many terms becausem2 ranges over finitely many values. Thus, usi
Eq. ~18!, the only nonvanishing contribution to the above sum, in the limitj 1→`, is from the term
( j 1 j 1 ; j 2 Du j j ). Furthermore, we must haveu( j 1 j 1 ; j 2 Du j j )u51. Hence the highest weigh
state approaches the simple form of Eq.~12!, i.e.,

u j j & →
j 1 , j→`

u j 2 D&u j 1 j 1& , ~20!

and the proof is complete.
The converse result, that every product state of the typeu j 2D&u j 1 j 1& becomes a highest weigh

stateu j j & with j 5 j 11D as j 1→`, is easily shown starting from the general expression

u j 2D&u j 1 j 1&5(
j

u j , j 11D& ~ j 1 j 1 ; j 2 Du j j 11D! . ~21!

All of these asymptotic properties can be verified directly from the exact expression6

~ j 1 m1 ; j 2 m2uJ J!5~21! j 12m1

3A ~2J11!! ~ j 11 j 22J!! ~ j 11m1!! ~ j 21m2!!

~ j 11 j 21J11!! ~ j 12 j 21J!! ~2 j 11 j 21J!! ~ j 12m1!! ~ j 22m2!!
.

~22!

The above lemma can be seen as a special case of Eq.~8! by observing first that, for su~2!, H

is the u~1! , su~2! subalgebra spanned byJ0, so that the graded subspaces ofW contain states of
a givenm value. Since the su~2! coupling is multiplicity free, the subspacesWk of Eq. ~5! contain
a single su~2! unirrep and the subspaceWj

j contains only the highest weight state of the unirrepj .
Thus, in the notation of Sec. II, Eq.~12! is equivalent to the statement

lim
j , j 1→`

Wj
j5Vj 2 j 1

j 2 ^ Vj 1

j 1 . ~23!

C. Highest grade subspaces of rank N Lie algebras

Lemma 2:Let Vl denote the carrier space for a unirrep ofG of highest weightl and letW
be the tensor productW5Vl2^ Vl1. Let Wk be theG -invariant subspace ofW containing the
highest weight states of gradek. Then, the highest grade subspaceWk

k,Wk,W is given asymp-
totically by
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Wk
k→Vk2@l1#

l2 ^ V
@l1#

l1 , as l1→` . ~24!

Proof: SinceWk
k is the highest grade subspace of theG -invariant subspaceWk,W, it follows

that, if uC&PWk
k , thenei uC&50 , ;eiPN 1 . Let Ai denote an su~2! subalgebra ofG with a

positive roota iPL1 , where we recall thatL1 contains the positive roots ofG which are
asymptotic for the irrepl1.

Sinceei uC&50 for any uC&PWk
k , it follows thatWk

k is spanned by a set of states which a
all highest weight states for unirreps ofAi . Moreover, sincea iPL1 , it follows that such a
highest weight stateuC& is an asymptotic su~2! highest weight state for the su~2! subalgebra
generated byei and f i . Therefore, byLemma 1,uC&5uw&uc& is a product of a stateuw&PVl2 and
a stateuc&Ps i , where

s i5$uc&PVl1; ei uc&50% . ~25!

Since this result holds for allAi,G with a iPL1 , and since

V
@l1#

l1 5$uc&PVl1 ;ei uc&50 , ;a iPL1% ~26!

it follows, in the asymptotic limit, that every state inWk
k lies in Vk2@l1#

l2 ^ V
@l1#

l1 . The converse

likewise follows from the converse ofLemma 1.This completes the proof.
The decomposition of a highest grade subspaceWk

k is a special case of Eq.~7! since, inWk
k ,

a highest weight state for a unirrep ofG is also a highest weight state for a unirrep ofH.
Therefore, we have, in the notation of Eq.~7!,

Wk
k5(

rl
Wl

rl , @l#5k . ~27!

By the same argument,V
@l1#

l1 is irreducible underH, since Vl1 is irreducible underG . This

implies thatV
@l1#

l1 5Vl1

l1 . On the other hand,Vk2@l1#

l2 is a sum ofH-irreducible subspaces

Vk2@l1#

l2 5(
gv2

Vgv2

l2 , @v2#5k2@l1#. ~28!

Now, let @Vgv2

l2 ^ Vl1

l1#av denote theH-coupled tensor product of irreducibleH-modules, where

v is a highest weight for anH-unirrep anda indexes its multiplicity in the tensor product spa
Vgv2

l2 ^ Vl1

l1. It follows from the lemma that

Wk
k5(

rl
Wl

rl→(
l

(
gv2a

@Vgv2

l2 ^ Vl1

l1#al , @l#5k ~29!

and

Wl
rl→ (

gv2a
Cr,gv2a

l @Vgv2

l2 ^ Vl1

l1#al , ~30!

whereCl is a r3r matrix which combines equivalent unirreps ofH.
Now, if t indexes a basis$uCt

rl&% for Wl
rl , we can write

uCt
rl&5 (

gv2a
i j

Cr,gv2a
l ~l1 i ;v2 j ual t!uwgv2 j

l2 &uc i
l1& , ~31!

where i indexes a basis$uc i
l1&% for Vl1

l1 , j indexes a basis$uwgv2 j
l2 &% for Vgv2

l2 , and

(l1 i ;v2 j ual t) is a Clebsch–Gordan coupling coefficient forH.
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The matrixCl depends only on the way in which the multiplicitiesr anda of theH-unirrep
l are separated. Since this separation is arbitrary, there exists a choice ofr anda that will make
Cl diagonal. This implies a remarkable property of asymptotic coupling coefficients for
states ofG in Wk

k : they can always be chosen to be equal to coupling coefficients for
subalgebraH,G .

D. An example: su „3…

The coupling of two su~3! unirreps provides the simplest application of Eq.~31!. For su~3!, we
have a Cartan subalgebraT with basis$h1 ,h2% and positive rootsD15$a1 ,a2 ,a3%, wherea1

anda2 are simple roots, and$e1 ,e2 ,e3% are the corresponding raising operators. Letucbs
l & denote

a state of weights5~s1,s2! of an su~3! unirrep of highest weightl, whereb indexes multiple
occurrences of the weights; the labelb will be suppressed when not needed. The highest we
state of the unirrepl5(l1,l2) will be denoted byul&5ucl

l&.
We will consider the tensor product of two su~3! unirrepsl2^ l1 in the limit in which, say,

the second componentl1
2 of l1 is asymptotically large. Then,F 15$a1%,L15$a2 ,a3%, andH

is the subalgebra ofG spanned by$e1 , f 1 ,h1 ,h2%, wheree1 and f 1 are root vectors correspondin
to the rootsa1 anda21, respectively.

We chooseh1 andh2 such that

@h1 ,e1#52e1 , @h1 , f 1#522 f 1 , @e1 , f 1#5h1 , ~32!

and

h1ucbs
l &5s1ucbs

l & , h2ucbs
l &5s2ucbs

l & . ~33!

H is then the direct sumH5su~2!1u~1!, where su~2! is the algebra spanned bye1 , f 1, andh1,
and u~1! is spanned byh2. Since states of a given grade have identical values ofs2, we can
identify the grade withs2.

The subspaceV
@l1#

l1 contains states with the property

V
@l1#

l1 5$uc&PVl1;ei uc&50, i 52,3% . ~34!

States inV
@l1#

l1 are generated from the highest weight stateul1& by repeatedly acting onul1& with

the lowering operatorf 1. Thus they carry a unirrep of angular momentumj 15l1
1/2 of su~2! ,H

and a unirrepl1
2 of u~1! ,H. The stateul12ra1& @see Fig. 1~b!#, which is obtained by lowering

r times fromul1&, can be written, in anH5 su~2!1u~1! basis,

ul12ra1&5uc
j 1m1l

1
2

l1 & , ~35!

wherem15 j 12r .
The subspaceVl

l2,Vl2 has decomposition intoH-irreducible subspaces given, in the not
tion of Eq. ~28!, by

Vl
l25(

j 2

V
j 2s2
l2 , s25 l , ~36!

where the multiplicity labelg of Eq. ~28! is suppressed because the unirrepj 2s2 occurs at most
once inVl

l2 . An su~2!1u~1! basis forV
j 2s2
l2 is then given by$uw j 2m2s2

l2 & ;m252 j 2 , . . . ,j 2 .%.

From Lemma 2, we know that a basis forWk
k is given by products of the type

uw
j 2m2s2
l2 &uc

j 1m1l
1
2

l1 &, with k5l1
21s2. These states can be combined to form a good su~2!1u~1!-

coupled basis$uCJMk&% for Wk
k with

uCJMk&5@ uw
j 2s2
l2 & ^ uc

j 1l
1
2

l1 &] M
Jk5 (

m1m2

~ j 1 m1 ; j 2 m2uJ M!uw
j 2m2s2
l2 &uc

j 1m1l
1
2

l1 & , ~37!
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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where (j 1 m1 ; j 2 m2uJ M) is an ordinary su~2! coupling coefficient. The u~1! coupling is fulfilled
by the requirement thatl1

21s25k.
SinceWk

k is a highest grade subspace, an su~2!1u~1! highest weight stateuCJJk& is also a
highest weight state for an su~3! unirrep of highest weightl5(l152J,l25k). We then have the
identificationuCJJk&5ul&.

Although the su~2!1u~1! coupling is multiplicity-free, there may be more than oneuCJJk&
~and hence more than one occurrence oful&) because, in general,Vl

l2 contains more than one
value of j 2 such that the couplingj 2^ j 1→J exists. Since there is one copy ofuCJJk& for every j 2

satisfying the above condition, an obvious way to distinguish these multiple copies ofuCJJk& is to
label them withj 2. Highest weight states for the su~2!1u~1! unirrepJk will henceforth be denoted
uC j 2JJk&.

If r labels multiple occurrences of the su~3! highest weight stateul&, the set$url&% may still
differ from $uC j 2JJk&% by an arbitrary unitary transformation; this is the matrixCl of Eq. ~31!.
Thus, the identificationr↔ j 2, which provides a convenient resolution of the multiplicities in t
l2^ l1→l coupling, makes this matrix diagonal. Furthermore, for this choice, we have

u j 2l&5 (
m1m2

~ j 1 m1 ; j 2 m2uJ J!uw
j 2m2s2
l2 &uc

j 1m1l
1
2

l1 & , ~38!

where 2J5l1 andl1
21s25l2. Other states withMÞJ are obtained by lowering withf 1, and we

have, in general,

u j 2lt&5 (
m1m2

~ j 1 m1 ; j 2 m2uJ M!uw
j 2m2s2
l2 &uc

j 1m1l
1
2

l1 & , ~39!

where 2M5t.
Thus, in the limit where one component ofl1 becomes asymptotically large, we find th

su~3! coupling reduces to su~2!1u~1! coupling, with

~l1 j 1m1s1
2 ,l2 j 2m2s2

2urlt!→dr, j 2
ds

1
2 ,l

1
2~ j 1m1 , j 2m2uJM! . ~40!

This conclusion is confirmed when we take the limit of the expressions obtained, for instan
Hecht7 for some su~3! coupling coefficients~cf. also Rowe and Repka8!.

Suppose now that both components (l1
1 ,l1

2) of l1 are asymptotically large. Since 2j 15l1
1

and 2J5l1, the coupling coefficient appropriate to this case is obtained from Eq.~40! by taking
the limit of the su~2! coefficient:

lim
l1 ,l→`

~l1 j 1m1s1
2 ,l2 j 2m2s2

2urlt!→dr, j 2
ds

1
2 ,l

1
2 3 lim

j 1 ,J→`

~ j 1m1 , j 2m2uJM! . ~41!

In the next section, we show how Clebsch–Gordan coefficients of the type (j 1m1 , j 2m2uJM) can
be evaluated in thej 1→` limit.

E. Asymptotic Clebsch–Gordan coefficients

Let G be a compact semisimple Lie algebra of rankN, and letVl1, Vl2 be defined as before
Lemma 3:Let uw&PVl2,uc&PV

@l1#2p
l1 , and assume thatp is finite. Then, in the limit in which

l1→`, the stateuC&5uw&uc&PVl2^ Vl1 is such that

f kuC&→uw&@ f kuc&] , ; f kPN 2 . ~42!

Proof: Recall thatN 2 contains root vectors whose corresponding roots are asymptoti
l1→`. Then, we have

f kuC&5@ f kuw&] uc&1uw&@ f kuc&] . ~43!
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We may assume, without loss of generality, thatuw& and uc& are normalized states so th
iuw&i25iuc&i251. Then

i f kuC&i25i f kuw&i21i f kuc&i2 . ~44!

Now

i f kuc&i25^cuekf kuc&5^cu@ek , f k#uc&1iekuc&i25^cuhkuc&1iekuc&i2 , ~45!

which, sincê cuhkuc&→` asl1→`, implies that

i f kuc&i2→` as l1→` . ~46!

On the other hand,i f kuw&i2 remains finite and the lemma is shown.
Two important properties for the norms of asymptotic states follow from this lemma. Firs

uC i j &5uw i&uc j&, wherei labels a basis$uw i&% for Vl2, and j labels a basis$uc j&% for V
@l1#2p
l1 , and

consider the linear combination

uQ&5(
i j

ci j uC i j & , ~47!

where ci j are complex coefficients satisfying( i j ci j ci j* 51, but otherwise arbitrary. Then, b
Lemma 3, it follows that i f kuc j&i is independent ofj . @Proof: act on uQ& to construct the nor-
malized statef kuQ&/i f kuQ&i in terms of uw i& and uc j&. Since uw i& is normalized, and since
( i j ci j ci j* 51, we deduce thati f kuc j&i5i f kuQ&i; j .#

Next, it follows immediately from Eq.~45! that i f kuQ&i5i f kuc j&i is also independent of an
component ofl or l1 that is asymptotically large.@Proof: Eq. ~45! is unchanged if we use th
unirrep l̃1 whose highest weight is related to the highest weight ofl1 by l̃15l11D, whereD
5(d1 , . . . ,dn) contains only finite integers.#

Theorem 1:Let p be a finite integer. Then,

Wk2p
k →Vk2@l1#

l2 ^ V
@l1#2p
l1 , as l1→` . ~48!

Proof: Let uw&PVk2@l1#

l2 anduc&PV
@l1#2p
l1 . Assume the theorem holds for somep, and act on

uC&5uw&uc&PWk2p
k with any f rPG 2q ,q.0. SinceWk is G -invariant, we have, by Eq.~4!,

f r uC&PWk2p2q
k , and, byLemma 3and Eq.~4!,

f r uC&→uw&@ f r uc&] PVk2@l1#

l2 ^ V
@l1#2p2q
l1 . ~49!

Hence, if the theorem holds forp, it holds forp1q. The seed of the recursion is Lemma 2, whi
is Theorem 1 forp5q50. Going over allf r in all G 2q completes the proof.

Consider, for example, the su~2! coupling j 2^ j 1 in the limit in which j 1→` but j 2 remains
finite. Application of the theorem implies that, for a finite value ofp, the state

u j , j 2p&5 (
m1 ,m2

~ j 1 m1 ; j 2 m2u j j 2p!u j 2 ,m2&u j 1m1& ~50!

becomes, in thej 1→` limit,

u j , j 2p&→u j 2 , j 2 j 1&u j 1 , j 12p& . ~51!

It follows that, for finitep, the asymptotic SU~2! coupling coefficients are given by

~ j 1 m1 ; j 2 m2u j j 2p!→dm1 , j 12p dm2 , j 2 j 1
. ~52!

For an arbitrary compact semisimple Lie algebra, the highest grade states in the tensor p
spaceVl2^ Vl1 become, by Theorem 1, of the form
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uClt
rl&→(

v2s
Cr,g2v2s

l @ uwg2v2

l2 & ^ ucl1

l1&] slt , ~53!

in the asymptotic limitl1→`, whereCl is a unitary transformation. If a particular resolution
the multiplicity is chosen, equivalent to settingr[(g2v2s), such thatCl is an identity matrix,
then we have

uClt
rl&→@ uwg2v2

l2 & ^ ucl1

l1&] slt , r[~g2v2s! ~54!

and theH-reduced asymptotic CG coefficients

~l1g1v1 ,l2g2v2irll!s→dv1 ,l1
dr,g2v2s , ~55!

in accordance with Eq.~31!.
To obtain the asymptotic limits of coefficients (l1g1v1 ,l2g2v2irlgv)s for finite values of

@l#2@v#, let the stateuCgvt
rl & be expressed in the form

uCgvt
rl &5@Pn~ f ! ^ uCl

rl&] avt , ~56!

where Pn( f ) is an H-tensor of highest weightn whose components are polynomials in t
elements ofN 2 and we identify the multiplicity indexg with the pair of indices (na). Then, in
the asymptotic limit,

uCgvt
rl &→@Pn~ f ! ^ @ uwg2v2

l2 & ^ ucl1

l1&] sl] avt . ~57!

Let f(l1 ,v2 ;sl) be the phase factor for which

@ uwg2v2

l2 & ^ ucl1

l1&] sl5f~l1 ,l2 ;sl!@ ucl1

l1& ^ uwg2v2

l2 &] sl . ~58!

Using Theorem 1 and settingr[(g2v2s), we have

uCgvt
rl &→f~l1 ,v2 ;sl! (

bkv1

U~v2l1vn;lsa,v1bk!@@Pn~ f ! ^ ucl1

l1&#bv1
^ uwg2v2

l2 &] kvt,

→f~l1 ,v2 ;sl! (
bkv1

f~v2 ,v1 ;kv!U~v2l1vn;lsa,v1bk!@ uwg2v2

l2 & ^ ucnbv1

l1 &] kvt ,

~59!

whereU(v2l1vn;lsa,v1bk) is a Racah recoupling coefficient forH, andk labels multiple
copies ofv in the couplingv1^ v2. In deriving Eq.~59!, we have used properties of the norm
of asymptotic states discussed as corollaries of Lemma 3. Furthermore, we use (nb) to label
multiple occurrences ofg1. Thus we find

~l1g1v1 ,l2g2v2irlgv!s→(
k

f~l1 ,v2 ;sl!f~v2 ,v1 ;av! U~v2l1vn;lsa,v1bk!

3 Mgk
v 3 dr,g2v2s dg,na dg1 ,nb , as l1→` , ~60!

where the matrixMv combines the equivalentH-representationsv. Since this matrix depend
only on the arbitrary way in which the multiplicitiesg andk of theH-unirrepv are separated, we
setk5g and choose the phases so thatMv is the unit matrix. It then follows that theH-reduced
asymptotic coupling coefficients for basis states ofG in W@l#2@v#

k , for finite values of@l#
2@v#, are given simply by a recoupling coefficient for the subalgebraH times some phases, i.e
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~l1g1v1 ,l2g2v2irlgv!s→f~l1 ,v2 ;sl!f~v2 ,v1 ;av!

3U~v2l1vn;lsa,v1bg!dr,g2v2s dg,na dg1 ,nb , as l1→`.

~61!

Combining Eq.~59! with Eq. ~61!, we finally obtain the simple expression

uCgvt
rl &→f~l1 ,v2 ;sl!(

bv1

f~v2 ,v1 ;kv!U~v2l1vn;lsa,v1bv!

3@ uwg2v2

l2 & ^ ucnbv1

l1 &] gvtdr,g2v2s dg,na , asl1→` . ~62!

IV. THE REAL SYMPLECTIC sp „m,R… ALGEBRAS

In this section, we discuss the generalization of the above results to noncompact sem
Lie algebras. For simplicity we restrict considerations to sp(m,R!, although the results are muc
more widely applicable. We also restrict considerations to products of harmonic seri
representations.9,10 These representations, which include the positive discrete series, have l
weights but no highest weights. Thus we consider subspaces ofW5Vl2^ Vl1 that are lowest
~rather than highest! in grade.Wk,W is now the sp(m,R!-invariant subspace containing th
lowest weight states of gradek, andWk1p

k is the subspace ofWk of gradek1p.

A. Factorization for sp „1,R…

The elements of sp~1,R! satisfy

@J2 ,J1#52J0 , @J0 ,J6#56J6 , ~63!

with matrix elements given by

J0u jm&5mu jm& , m5 j , j 11,j 12, . . . ,

J1u jm&5A~m1 j !~m2 j 11!u j ,m11& , ~64!

J2u jm&5A~m2 j !~m1 j 21!u j ,m21& ,

where j 5 1
4,

3
4,

5
4, . . . . Now, consider the coupling of two harmonic series unirrepsj 2^ j 1 with

j 1→` and j 2 finite. It can be verified, e.g., by comparing the number of states of weighm
5m11m2 with the number of states of weightm21, that

j 2^ j 15~ j 11 j 2! % ~ j 11 j 211! % ~ j 11 j 212! % ••• . ~65!

Next, consider the lowest weight stateu j j & of a subrepresentation in Eq.~65!, with j 5 j 11 j 2

1s, where j 2 ands>0 are finite, in the limitj 1→`. Write

u j j &5 (
m1m2

~ j 1 m1 ; j 2 m2u j j ! u j 2m2&u j 1m1& , ~66!

where (j 1 m1 ; j 2 m2u j j ) is now an sp~1,R! coupling coefficient. If we useJ2u j j &50, we get

05 ~ j 1 m111; j 2 m221u j j ! A~m1112 j 1!~m11 j 1!

1 ~ j 1 m1 ; j 2 m2u j j ! A~m22 j 2!~m21 j 221! .

This equation can then be rewritten as

~ j 1 m111; j 2 m221u j j !

~ j 1 m1 ; j 2 m2u j j !
52A~m22 j 2!~m21 j 221!

~m1112 j 1!~m11 j 1!
. ~67!

Sincem11 j 1>2 j 1 and j 1→` while j 2 andm2 remain finite, it follows that
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~ j 1 m111; j 2 m221u j j !

~ j 1 m1 ; j 2 m2u j j !
→0 asj 1→` . ~68!

If we now suppose thatu j , j 1d&→u j 2 , j 2 j 1&u j 1 , j 11d& as j 1→`, when d is some finite
integer, then, by acting onu j , j 1d& with J1 , we find, on the one hand,

J1u j , j 1d&5A~2 j 1d!~d11!u j , j 1d11& , ~69!

while, on the other hand,

J1@ u j 2 , j 2 j 1&u j 1 , j 11d&] 5A~2 j 11d!~d11!u j 2 , j 2 j 1&u j 1 , j 11d11&

1A~2 j 21s!~s11!u j 2 , j 2 j 111&u j 1 , j 11d& . ~70!

Comparison of these equations gives

u j , j 1d11&5A~2 j 11d!

~2 j 1d!
u j 2 , j 2 j 1&u j 1 , j 11d11&

1A~2 j 21s!~s11!

~2 j 1d!~d11!
u j 2 , j 2 j 111&u j 1 , j 11d& , ~71!

and implies that

u j , j 1d11&→u j 2 , j 2 j 1&u j 1 , j 11d11& , as j 1→` . ~72!

Hence we have shown by recursion that the following holds:
Lemma 4:Let j 5 j 11 j 21s with s>0. Then, if j 2 ands are finite,

u j , j 1d&→u j 2 , j 2 j 1&u j 1 , j 11d& , as j 1→` . ~73!

B. Asymptotic unirreps of sp „m,R…

Every harmonic series representation of sp(m,R! is contained within the space of some A
particle harmonic oscillator inm dimensions.9,10 For these representations, the sp(m,R! algebra is
realized as the set of bilinear products of creation and destruction operators:

Ai j 5 (
a51

A

bai
† ba j

† ,

Ci j 5 (
a51

A
1

2
~bai

† ba j1ba jbai
† ! , ~74!

Bi j 5 (
a51

A

baiba j ,i , j 51, . . . ,m .

Sp(m,R! and u(m) have a common Cartan algebra, spanned by$Cii ,i 51, . . . ,m%. Thus a
u(m) unirrep is labeled by a highest weightl5(l1, . . . ,lm) wherel i is an eigenvalue ofCii and
l i>l i 11. However, the sp(m,R! unirreps we consider have no highest weight. The carrier sp
of these sp(m,R! unirreps comprise infinitely many u(m) invariant subspaces each labeled by
u(m) highest weight. The lowest of these u(m) highest weights uniquely characterizes t
sp(m,R! unirrep and will be referred to as the lowest weight of the sp(m,R! irrep.

We will consider states of sp(m,R! unirreps in the limit wherelm→`. This implies that all
the other components ofl are also asymptotically large.

There are two types of sp(m,R! raising operators: the compact su(m) raising operators
$Ci j ;1< j , i<m% and the noncompact raising operators$Ai j ;1< i , j <m%. The action of anAi j

operator connects weights belonging to an sp~1,R! chain. States of an sp~1,R! chain carry a unirrep
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of an sp~1,R! subalgebra of sp(m,R!. If such a unirrep is labeled byj , we define the correspondin
sp~1,R! chain of weights to be an asymptotic chain if and only ifj→` asl→`. Moreover, we
note that, whenlm→`, all the $Ai j % operators generate asymptotic chains. Thus, whenlm→`,
all the noncompact roots are inL1 .

Chains of weights associated with the compact su(m) roots are conveniently analyzed b
reexpressing a u(m) weight l as an su(m)1u~1! weight with components (l12l2,l22l3,
. . . ,lm212lm)lm. The chains of weights associated with the compact su(m) roots then become
asymptotic when the differencesl i2l i 11 of consecutive components of a u(m) weight become
large.

We assume, for the moment, thatl i2l i 11 remains finite for alli , so thatF 1 contains all the
positive su(m) roots; i.e.,F 1 contains the compact positive roots andL1 contains the noncom
pact positive roots. We then haveH5 u(m), and sp(m,R! ~or, more precisely, its complex
extension! has the graded decomposition

sp~m,R!5G 01G 11G 2 , ~75!

whereG 0 is the u(m) subalgebra spanned by the$Ci j %, G 1 is spanned by the raising operato
$Ai j %, andG 2 is spanned by the lowering operators$Bi j %. The grade is conveniently identifie
with the eigenvalue of the operator

N̂5(
i 51

m

Cii . ~76!

The lowest grade subspaceV@l#
l of an sp(m,R!-irreducible vector spaceVl is defined as the

subset of states that are annihilated by the elements ofG 2 :

V@l#
l 5$uc&PVl; Bi j uc&50, ;Bi j PG 2% . ~77!

If one or more of the su(m) labelsl i2l i 11 becomes asymptotically large, thenF 1 andL1

must be shrunk and expanded accordingly. However, as the process of takinglm→` ‘‘com-
mutes’’ with the process of taking any su(m) label to`, we will assume henceforth that all th
l i2l i 11 are finite, knowing that the extra simplifications that arise should one or more sm)
labels become asymptotically large can be made once the analysis of the large-lm limit has been
completed.

C. Lowest grade subspaces of sp „m,R…

Lemma 5:Let Vl denote the carrier space for a unirrep of sp(m,R! of lowest weightl. Let
Wk,W be the sp(m,R! invariant subspace ofW5Vl2^ Vl1 containing the lowest weight states o
grade k, where k5@l1#1@l2#1s, with s a finite integer. Then, the lowest grade subspa
Wk

k,Wk is given asymptotically by

Wk
k→Vk2@l1#

l2 ^ V
@l1#

l1 , asl1
m→` . ~78!

Proof: The proof parallels that given for Lemma 2 and is omitted.
It is possible to use this lemma to derive asymptotic sp(m,R! coupling coefficients. Since

H5 u(m) in the l1
m→` limit, it follows, in the notation of Eq.~31!, that a basis$uCt

rl&% for
Wl

rl,Wk
k is given by the states

uCt
rl&5 (

gv2a
i j

Cr,gv2a
l ~l1 i ;v2 j uav t!uwgv2 j

l2 &uc i
l1&, ~79!

wherea labels the multiplicity of the u(m) couplingv2^ l1→l, i indexes a basis$uc i
l1&% for the

u(m) unirrepl1 in V
@l1#

l1 , j indexes a basis$uwgv2 j
l2 &% for thegth copy of the u(m) unirrepv2 in

Vk2@l1#

l2 , and (l1 i ;v2 j uav t) is a u(m) Clebsch–Gordan coupling coefficient.

The derivation of Eq.~79! is identical to the derivation of Eq.~31! and therefore omitted.
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D. Asymptotic states of sp „m,R…

Lemma 6:Let uc&PVl1 and uw&PV
@l2#1q
l2 be normalized states, whereq is a finite positive

integer. Then, in thel1
m→` limit, the stateuC&5uw&uc&PVl2^ Vl1 satisfies

Ai j uC&→uw&@Ai j uc&] , ; i j . ~80!

Proof: We have

Ai j uC&5@Ai j uw&] uc&1uw&@Ai j uc&] ~81!

and, sinceuw& and uc& are normalized states,

iAi j uC&i5iAi j uw&i1iAi j uc&i . ~82!

To evaluateiAi j uc&i , observe that

iAi j uc&i25^cu@Bi j ,Ai j #uc&1iBi j uc&i2

5^cuCii 1Cj j 12d i j Cii uc&1iBi j uc&i2 . ~83!

Since

^cuCii uc&>^cuCmmuc&>l1
m , ~84!

it follows that iAi j uc&i2→` asl1
m→`. On the other hand, foruw&PV

@l2#1q
l2 , with q finite, the

norm iAi j uw&i remains finite. Hence we haveiAi j uC&i→iAi j uc&i and the proof is complete.
Theorem 2:In the l1

m→` limit,

Wk1p
k →Vk2@l1#

l2 ^ V
@l1#1p
l1 ~85!

for finite values ofp.
Proof: The proof is by induction, starting with Lemma 5. It parallels that for Theorem 1,

uses Lemma 6 rather than Lemma 3 to iterate between the graded subspaces.
Asymptotic coupling coefficients for the large-l1

m limit of sp(m,R! can be derived in the
manner of Sec. III E, provided that the polynomialPn( f ) appearing in Eqs.~56!, ~57!, and~59! is
replaced by the corresponding polynomialPn(A) in terms of raising operators. Thus in thel1

m→`
limit and for finite values of@v#2@l#, wherev andl label unirreps of u(m), the stateuCgvt

rl & is
given by Eq.~62!, where all coupling and recoupling coefficients are u(m) coefficients.

V. sp „m,R… TENSOR OPERATORS

In this section, we extend the results on sp(m,R! to the coupling of a nonunitary finite
dimensional representation of sp(m,R! to a unitary infinite-dimensional representation. Interes
such couplings arises because tensor operators often belong to finite-dimensional irreps.

A. sp „1,R… tensor operators

The components$Tm̃
j̃ ;m̃52 j̃ , . . . ,1 j̃ % of a finite-dimensional~nonunitary! sp~1,R! tensor

operatorT j̃ are related10 by the equations

@J6 ,Tm̃
j̃
#57A~ j̃ 7m̃!~ j̃ 6m̃11!Tm̃11

j̃ ,

@J0 ,Tm̃
j̃
#5m̃Tm̃

j̃ . ~86!

The decomposition of the couplingj̃ ^ j , where j is the lowest weight for a unirrep, can b
inferred by simply counting the number of states with a given weightM5m̃1m. This shows that
j̃ ^ j is the finite sum of unitary irreducible representations
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j̃ ^ j 5u j 2 j̃ u % u j 2 j̃ 11u % ••• % u j 1 j̃ u . ~87!

We are interested in the lowest weight states of these couplings, which we express in th

@T j̃
^ u j &] J

J5(
m,m̃

~ j m; j̃ m̃uJ J!Tm̃
j̃ u jm& . ~88!

Applying the lowering operatorJ2 to Eq. ~88!, we get

05(
m,m̃

~ j m21; j̃ m̃11uJ J!@J2 ,Tm̃11
j̃

#u jm21&

1(
m,m̃

~ j m; j̃ m̃uJ J!Tm̃
j̃

@J2u jm&] , ~89!

from which it follows, using Eqs.~64! and ~86!, that

05A~ j̃ 1m̃11!~ j̃ 2m̃! ~ j m21; j̃ m̃11uJ J!

1A~m2 j !~m1 j 21! ~ j m; j̃ m̃uJ J! . ~90!

Combined with the fact that there are finitely many coupling coefficients whenj̃ is finite, Eq.~90!
can be used to establish that

~ j m; j̃ m̃uJ J!→k S 1

A2 j
D m2 j

~ j j ; j̃ J2 j uJ J! , asj→` , ~91!

wherek is some finite constant. It then follows that

@T j̃
^ u j &] J

J→TJ2 j
j̃ u j j & , asj→` . ~92!

Furthermore, since

J1@T j̃
^ u j &] J

J5A2J@T j̃
^ u j &] J11

J →@J1 ,TJ2 j
j̃ #u j j &1TJ2 j

j̃ @J1u j j &]

52A~ j̃ 2J1 j !~ j̃ 1J2 j 11!TJ2 j 11
j̃ u j j &1A2 jTJ2 j

j̃ u j , j 11& , ~93!

we have

@T j̃
^ u j &] J11

J →TJ2 j
j̃ u j , j 11& , as j→` . ~94!

By acting now on@T j̃
^ u j &] J11

J with J1 , we find, in the same manner, that

@T j̃
^ u j &] J12

J →TJ2 j
j̃ u j 1 , j 112& , asj→` . ~95!

These are the first two steps of an inductive proof of the following lemma.
Lemma 7:For finite values ofj̃ ,

@T j̃
^ u j &] J1d

J →TJ2 j
j̃ u j , j 1d& , as j→` . ~96!

B. sp „3,R… tensor operators

The coupling of an sp~3,R! tensor operatorTl̃, that transforms according to a nonunitar
finite dimensional representationl̃ , to a unitary asymptotic irrepl of sp~3,R! can be reduced a
follows.
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



h
y

1102 J. Math. Phys., Vol. 39, No. 2, February 1998 H. de Guise and D. J. Rowe

Downloaded
Let us denote bŷ l& the character of the Sp~3,R! irrep with lowest weightl and by $l%
5$l1,l2,l3% the character of the U~3! irrep with highest weightl5(l1,l2,l3). Then, forl3

>3, the Sp~3,R! → U~3! branching rule is given in terms of characters,10 by

Sp~3,R!→ U~3! ; ^l&°$l%•$D% , ~97!

whereD denotes the sum of U~3! irreps with character

$D%5$0%1$2%1$4%1$2,2%1$6%1$4,2%1$2,2,2%1••• . ~98!

Let

^l&°(
p

mp$vp%5(
p

mp$vp
1 ,vp

2 ,vp
3% , ~99!

denote the decomposition of the character ofl̃ into its U~3! characters$vp%5$vp
1 ,vp

2 ,vp
3%, where

mp is the multiplicity of vp in l̃. Sincel̃ is finite dimensional, the sum in Eq.~99! will contain
finitely many U~3! unirreps. Then, if̂ l̃ &•^l1& denotes the character for the tensor productl̃^l1

of a finite Sp~3,R! irrep (l̃) and an infinite unitary irrep (l1), we have

Sp~3,R!→ U~3! ; ^l̃ &•^l1&°(
p

mp$vp%•$l1%•$D% . ~100!

By comparing this expression with Eq.~97!, we deduce that an Sp~3,R! unirrep with lowest weight
l will occur (pmp3rl times, whererl is the multiplicity of the U~3! highest weightl in the
reduction of the U~3! productvp^ l1; i.e., if

^l&°(
p

mp$vp% and $vp%•$l1%5(
l

rl$l% , ~101!

then

^ l̃ &•^l1&5(
pl

mprl^l& . ~102!

Lemma 8:Let Tl̃ be an sp~3,R! tensor operator, and letVl1 be defined as usual. LetWk,W

be the sp~3,R! invariant subspace ofW5Tl̃
^ Vl1 containing the lowest weight of gradek. Then,

the lowest grade subspaceWk
k,Wk is given, in the limit wherel1

3→`, by

Wk
k→Tk2@l1#

l̃
^ V

@l1#

l1 , ~103!

whereTk2@l1#
l̃ is the subspace ofTl̃ spanned by the components ofTl̃ with gradek2@l1#.

Proof: Let $Ai j ,Bi j ,@Ai j ,Bi j #% denote a basis forAi j , the sp~1,R! subalgebra of sp~3,R!
generated byAi j andBi j . SinceWk

k is a lowest grade subspace of the sp~3,R! invariant subspace
Wk,W, it follows thatBi j uC&50 for anyuC&PWk

k . ThusWk
k is spanned by a set of states whic

are all lowest weight states for unirreps ofAi j . If uC& is such a lowest weight state, it is, b

Lemma 7, a productuC&5Tq
l̃ uc& of a stateuc&Ps i j and a component ofTl̃, where

s i j 5$uc&PVl1; Bi j uc&50% . ~104!

Since this result holds for allAi j , and since

V
@l1#

l1 5$uc& ;Bi j uc&50 ;; i j % , ~105!

it follows that, in the asymptotic limit, every state inWk
k lies in Tk2@l1#

l̃
^ V

@l1#

l1 , and the proof is

complete.
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Now, if a labels the components$Tgpvpa
l̃ % of the U~3! tensorTgpvp

l̃ whose components are

subset of components of the sp~3,R! tensorTl̃, we have

Tgpvpa
l̃ ucb

l1&PWk
k , k5@vp#1@l1# , ~106!

whereb labels basis states$ucb
l1&% in V

@l1#

l1 . Furthermore, since

@Ai j ,Tgpvpa
l̃ #5 (

g8v8b8
cgpvpa,g8v8b8Tg8v8b8

l̃ , ~107!

and, for finite values ofl̃ , the coefficientscgpvpa,g8v8b8 are finite for all values of the indices, w
immediately find that

Ai j Tgpvpa
l̃ ucb

l1&→Tgpvpa
l̃ Ai j ucb

l1& , ;ucb
l1&PVl1 , ~108!

since, as seen before,iAi j uc&i→` in the l1
3→` limit. From this, we now have

Theorem 3:In the l1
3→` limit of l1,

Wk1q
k →Tk2@l1#

l̃
^ V

@l1#1q
l1 . ~109!

Proof: The proof is once again inductive starting this time with Lemma 8 and using Eq.~108!
to step between the graded subspaces. The details are omitted.

Using the theorem, we find, in the notation of Eq.~62!, that

uCgvt
rl &→f~l1 ,vp ;sl!(

bv1

f~vp ,v1 ;gv! U~v2l1vn;lsa,v1bg!

3@Tgpvp

l̃
^ ucnbv1

l1 &] gvt dr,gpvps dg,na , as l1
3→` , ~110!

where the coupling is a u~3! coupling, andU is a Racah recoupling coefficient for u~3!.

VI. DISCUSSION AND CONCLUSION

In this paper we have investigated the properties of asymptotic representations by look
matrix elements of some ladder operators of semisimple Lie algebras. Ladder operators ar
rally associated with gradings of representations. Thus we have made use of the fact
contraction, corresponding to an asymptotic limitl→`, preserves a suitably defined grad
structure of a Lie algebra and its ladder representations.

The formalism singles out a subalgebraH,G which, by construction, contains all the ladd
operators ofG with finite matrix elements. We have shown that, in the asymptotic limit asl1→`,
the basis states$uCgvt

rl &%, for which @l#2@v# is finite, for the tensor product spaceW5Vl2

^ Vl1, depend only on the coupling and recoupling coefficients ofH. Thus a major result of this
paper is given by Eq.~62!

uCgvt
rl &→f~l1 ,v2 ;sl!(

bv1

f~v2 ,v1 ;kv!U~v2l1vn;lsa,v1bv!

3@ uwg2v2

l2 & ^ ucnbv1

l1 &] gvt dr,g2v2s dg,na , asl1→` ,

where f(l1 ,v2 ;sl) and f(v2 ,v1 ;gv) are phase factors andU(v2l1vn;lsa,v1bg) is a
Racah coefficient forH. In deriving this explicit expression, we have made use of a result, g
in Sec. III C, that the arbitrariness of separating multiple copies of equivalent irreducible su
resentations in the tensor productl2^ l1 has a natural resolution in thel1→` limit.
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In thel1→` limit, a unirrep of a semisimple Lie algebraG approaches a~possibly reducible!
representation of a contractionG c of G . Consider, for example, a representation of the su~2! Lie
algebra

@J1 ,J2#52J0 , @J0 ,J6#56J6 ~111!

with angular momentumj and basis states$u jm&%. Let J 6 and I denote the renormalized
operators

J 65
J6

A2 j
, I 5

J0

j
. ~112!

In terms of these operators, the su~2! commutation relations become

@J 1 ,J 2#5I , @I ,J 6#56
J 6

j
. ~113!

Thus, in the asymptotic limit asj→`, we obtain the I˙nönü–Wigner12 contraction of su~2! to a
Heisenberg–Weyl algebra with

@J 1 ,J 2#5I , @I ,J 6#50 . ~114!

The latter algebra is more usually expressed in terms of harmonic oscillator raising and low
operators

@c,c†#5I , @I ,c#5@ I ,c†#50 . ~115!

Note also that we still have the commutation relation

@J0 ,J 6#56J 6 ~116!

which can be compared with the harmonic oscillator equations

@H,c†#5c† , @H,c#52c , ~117!

with H5c†c.
The way in which the states$u jm&% of the su~2! representation approach those of a harmo

oscillator is given by the identification

u jm&[un& , with n5 j 2m . ~118!

As j→`, we have, for small values ofn,

J 1un&5A 1

2 j
n~2 j 11! un21&→An un21& ,

J 2un&5A 1

2 j
~2 j 2n!~n11! un11&→An11 un11& , J 0un&5nun& . ~119!

Thus we obtain the correspondence

J 1→c , J 2→c† , I→I , J 0→c†c ~120!

valid whenevern! j . In terms of special functions, the contraction of spherical harmonic
Hermite polynomials can be found in Ref. 13.

Note that such a contraction of a semisimple Lie algebra is not semisimple. Since rep
tations of the non-semisimple algebra can be obtained as asymptotic limits of those of the
simple algebraG , we candefinethe coupling of an irrep ofG c to an irrep ofG as the asymptotic
limit of the coupling of irreps ofG . Asymptotic coupling coefficients ofG are precisely the
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coupling coefficients for the couplingG c3G→G c. Furthermore, the renormalization of the L
algebra implies a renormalization of the representation labels ofG , so that the labels specifying
representations ofG c can take finite values. Thus we have the remarkable fact that the asym
coupling coefficients become exact forG c3G→G c, even for finite values of the representatio
labels ofG c.

The Clebsch–Gordan coefficients for the coupling of two irreps,l1^ l2, of G c are given
precisely by the double limitl1 ,l2→` of Clebsch–Gordan coefficients forG . Unfortunately, it
appears difficult to compute such coefficients within the current formalism.

In a previous work,13 we obtained asymptotic Clebsch–Gordan coefficients for the s~3!
.so~3! subalgebra chain by a projection method. This projection method is different from
technique presented in Sec. III E. Nevertheless, it shares a ‘‘factorization’’ property with
current work. To be precise, it is implicit in Ref. 14 that

iQ0uw&i
iQ0uc&i→0 asl1

1→` , ~121!

whereuc&PVl1 anduw&PVl2 as usual, and whereQ0 is then50 component of an so~3! , su~3!
tensor operator. This leads immediately to the factorization

Q0uC&→uw&@Q0uc&] asl1
1→` , ~122!

which can be compared with Eq.~42! for components ofH,G tensors. However, unlike the
H,G tensors, not all components of the su~3! quadrupole momentQn satisfy Eq. ~121! in
general. Thus it would be interesting to know if asymptotic coupling always implies su
factorization of some matrix elements and if, conversely, such a factorization implies asym
coupling.

Asymptotic Clebsch–Gordan coefficients have so far been used to analyze coupled s
having two different scales. For instance, in some core-plus-particle models of the nucleu
so-called ‘‘collective’’ part of multipole operators can dwarf the single particle contribution
that Eqs.~42! or ~122! are true to a first approximation. The eigenfunctions of such two-s
systems are often found, to leading order, by using the Born–Oppenheimer~BO! approximation.15

This suggests a useful parallel between the physically insightful BO approach and the math
cal technique of asymptotic coupling.16 It remains to see if this parallel extends to higher orde
i.e., if corrections to the BO wave functions have a corresponding group-theoretical interpre
in terms of corrections to the asymptotic limit.

Finally, an obvious question which remains unanswered in the present work is the eval
and properties of asymptotic coupling coefficients for finite values of the grade@v#. In Ref. 14, we
computed su~2!.u~1! Clebsch–Gordan coefficients for finite value of the projectionm in the limit
where j→`. This was done by embedding the u~1! subalgebra so that the set of states obtain
from the highest weight state by the action of all elements of the corresponding U~1! subgroup
spanned the whole su~2! representation. In contrast, the theory and examples presented i
present paper are closely related to the work found in Ref. 8, where the subalgebraH does not
connect states in a unitary representation ofG having different grades. This suggests that differ
embeddings ofH, when equivalent, will yield results applicable to different ranges of value
@v#.
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