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Clebsch—Gordan coefficients in the asymptotic limit
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We investigate the graded structure of the tensor product sgsteV*1, which
arises in the coupling of two irreducible representativpsndA , of a semisimple

Lie algebra.s, in the limit in which one of the highest weights becomes asymp-
totically large. The construction of asymptotic coupling coefficients is considered.
© 1998 American Institute of Physids$0022-24888)01002-(

I. INTRODUCTION

It is known that every unitary irreducible representationirrep of a compact semisimple
Lie group is characterized by a highest weight (A1,\2,\3, . ..). Often, the unirreps of physi-
cal interest of noncompact semisimple Lie groups are likewise characterized by exthéeghakt
or lowes} weights.

In this paper, we consider the tensor prodvtt® V*1 of modules for two unirreps of highest
weights\ ; and\ , of a semisimple Lie algebra’ in the limit in which\ ; becomes asymptotically
large. (A weight \ is said to be asymptotically large if one or more of its components is asymp-
totically large) We show thatv*2@ V™1 is expressible as a sum of graded subspaces which carry
representations of a subalgeb#aC &, where 77 is uniquely determined by specification of which
components of\, are asymptotically large. We also show that the graded subspace$zof
® V™ are simple products of graded subspace¥’ofandV*2. This factorization implies simple
expressions for the Clebsch—Gordan coupling coefficients’af the asymptotic limit.

Our motivation for studying asymptotic limits arises because the limiting process is generally
associated with group contractions. Thus if a noncompact group of interest is the asymptotic limit
of a compact group, one can determine, for instance, Clebsch—Gordan coefficients for the non-
compact group by taking the asymptotic limit of Clebsch—Gordan coefficients for the correspond-
ing compact group.

An interesting example of this procedure can be found in the work of W. T. St@&tarp was
able to obtain formulas for various products of Bessel functions by considering them as contrac-
tions of Legendre functionsee Ref. 2, Sec. 5.71The coupling coefficients for Bessel functions
then emerged naturally as asymptotic limits of ordinary3@oupling coefficients.

Our analysis is appropriate for the less ambitious task of computing some coupling coeffi-
cients involving one representation of a group and one representation of its contraction. The need
for such coupling coefficients arises in physics when quantum numbers become large. For ex-
ample, it is well known, in nuclear physics, that the representations(8f approach those of the
noncompact rigid rotor algebra for large values of th¢3sthighest weighf The asymptotic
properties of tensor product spaces are also needed for other purposes. For example, they were
recently considered by Rowe and Rebkathe construction of the coherent shift tensors of Flath
and Towber.

The nontrivial unitary representations of a noncompact group are usually infinite dimensional,
even when their extremal weights are finite. To avoid confusion, we use the adjective
“asymptotic” rather than “infinite” to describe properties which approach infinity as one or
many components of an extremal weight become large. Thus, in the asymptotic limit, the number
of basis states in a unirrep of a compact group becomes asymptotically large. Similarly, some
chains of weights, which would be finite for finite highest weights, become asymptotic chains in
the limit.
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The paper is organized as follows. Sections Il and Il A, respectively, deal with the basics of
grade space decompositions and provide definitions and examples of asymptotic representations.
We give, in Sec. lll B, results for highest weight states of semisimple compact Lie algebras,
starting with s@2) and followed by the general case of any semisimple compact karlke
algebragwith N finite) in 1l C. In Sec. Ill D, the theory of the previous section is applied to the
Lie algebra s(B). The main result on asymptotic Clebsch—Gordan coefficients is presented in Sec.
I E.

Although close in spirit to the corresponding compact cases, the results for the noncompact
cases only apply to some of the representations appearing in the decomposition of the tensor
product of two unirreps of the positii@r negative discrete series. The results for noncompact
cases are specialized to spR) and presented in Sec. IV, starting with($fR) and followed by
sp(Mm,R).

Section V deals with the coupling of a finite dimensional, nonunitary representation to an
asymptotic unirrep.

Il. GRADE-SPACE DECOMPOSITIONS

In calculating Clebsch—Gordan coefficients for a semisimple Lie alggbia a basis which
reduces a subalgebr&@'C /7, one encounters a need to decompose tensor produgtsmofariant
spaces into irreducible- and.7Z-invariant subspaces. Thus\if* is a module for a unirrep of”
with highest weight\, we need to expresa/=V*2@ V1 as a sum

W= W= > weh (1)

1
pA PAY® ye

wherep indexes the multiplicity ofs-invariant subspacedV**} of highest weight in W and y
indexes the multiplicity of7Z-invariant subspaces of highest weightn W,

Such a decomposition is simplest whe# is a reductive subalgebra ¢f containing the
Cartan subalgebra™ and a subset of simple root vectors for The Lie algebras” can then be
expressed as a sum of graded subspaces

=2 %, 2
k
in which .77= % is the zero-grade subspace dng is the.7Z-invariant subspace ¢# containing
all simple root vectors not inZZ. It then follows that

[2:21]1C Fksr - )

This grading induces a corresponding gradifig =,V, of any module for a representation of
with the property

'%k:vl_}Vk-H . (4)

It will be convenient to introduce the notatipw ] to denote the grade of a weight Of particular
importance is the highest grade subsp%&/@g], since it is the subspace & containing the
highest weight state. This is because the highest grade subeégql@f an irreducible-module
is an irreducibleZZ-module having the same highest weight.

We denote byWKCW the sum of -invariant subspaces av=V*2@V*1 whose highest
weight states are of grade Let Wk=3, Wr be the grade-space decompositiodf so that

W=, WK=> Wk, (5)
k ki
WK can in turn be expressed as
Wk:E WPN | N]=K, (6)
pA
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whereWP! is as in Eq.(1) but the sum is restricted to highest weights which safisfi=k, and

We=> Wf”‘:E;, > wer, A=k [w]=], (7
PN Yo

J2N

WhereW’;ﬁ) is also as in Eq(1) but the sum is now restricted by the condition]=1.

The grade-space decompositionvigfis the first step towards obtaining the full decomposition
of Eq. (1). Moreover, if one already knows the Clebsch—Gordan coefficients for the subalgebra
77, it is the most important step in the evaluation of asymptotic Clebsch—Gordan coefficients for,
as we show in the following, the subspacwé acquire the very simple expressions

N N
W=V @ Vi ®

in suitable asymptotic limits. A consequence of E).is that asymptotic Clebsch—Gordan coef-
ficients for & can be reduced to Clebsch—Gordan coefficients#or

Ill. COMPACT, SEMISIMPLE LIE ALGEBRAS

For a compact, semisimple Lie algebra, the highest weights are dominant iniegraton-
negative and integer valugdFor su2) it will be convenient to follow the physics convention of
labeling irreps by the angular momentyrwhich can take integer or half-odd integer values. Thus
the sy2) angular momentum is half the standard, integer-valued, weight.

A. Asymptotic representations

We follow the convention of saying that a unirrep is asymptotic if its highest weight is
asymptatically large, and simply write— oo if one or more components af are asymptotically

large. We will denote byA | ={a;,a,, ... ,an,any1, - - - @q} @n ordered set of positive roots
of ¥ such that the firsN are simple, i.e.{aq, ...,a\} is a basis forA, , and denote by
1€1.€2, ... .en.ENs1s - - - € the corresponding root vectors.

If « is a root andw is a weight, then we shall refer to the set of weights of the type
+ney (n is an integer that occur within the weight space of a given irrep asagrstring. An
ay-string can be labeled by its highest weight. Then, if@astring has highest weightj2 its
weights are those of an &) irrep of angular momentunj. An «,-string will be said to be
asymptotic if and only iff —o as\—co,

Let A, be expressed as the sum of two subskts= %, +.7, , defined as follows. A
positive roota, e A, is an element of/, if the «-string of weights through the highest weight
state|\) of V* is an asymptotic string, whereas it is an elementf if the «,-string is not
asymptotic. Corresponding setd,_, 4, and.7_, contain the negatives of the roots in
A, , %, ,and.7, , respectively.

If all the components ok are finite, then, = and.7, =A , . Figure 1b) is an example
of a representation of a rank 2 compact algebra whétehe second component of the highest
weight\, is asymptotically large. In Fig.(d), o, .7, , while a, and all the other positive roots
belong to#, . In a situation where all the components of the weight are asymptotically large,
Fi=Jand ¥, =A.

The separation oA , into subsets\ , =%, +.7, leads to a grading o of the type given
in Eqg. (2), in which .77= £, contains a Cartan subalgebra for " as well as all root vectors
whose roots are i, and.7_ . The complementary nilpotent subalgebras

M= G and. S =, Ty ©

k=1 k=1

are spanned by root vectors whose roots ar&inand % _, respectively.

For example, for an asymptotic representation 6f su2), ./ .=¢. are the one-
dimensional algebras spanned by, respectively, and’ is the Cartan subalgebra of (8
spanned by,. In the example of Fig. (), .77 is spanned by, e;, andf; while. /. contain the
remaining positive and negative root vectors, respectively.
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FIG. 1. Example of the weight diagram of a unirrap with A>—. (a) Some roots of a rank 2 algebréh) An
asymptotically large irrep of this algebra.

Throughout this paper, we will assume that the Lie algebra>, ¢ is graded such that’;
is spanned by simple root vectafs;} for which the corresponding;-chains are asymptotically
long in the limit wherex;—. Thus ., will always contain positive roots of¢” that are
asymptotic for the irrep 4.

B. Highest grade subspaces of su (2)

The generators of $B) satisfy the well-known commutation relations
[Jo.d=1=%d., [J4+,J-1=2d0, (10)
with matrix elements given by

Jolimy=mljm) , m=j,j-1,...~j,

Jeljmy=V(iFm(jxm+1) [jm+1) . 1

Lemma 1:The highest weight statgj) of an sy2) unirrepj appearing in the decomposition
of the tensor produci,® j, is given, whenj, is finite andj;— o, by

lim [jj)y=1lj2 A) |i1j1) A=j—j;. (12

jji—e

Proof: Consider the state

)= 2 (i1 Mysio malj )iz mo)ljz my) . (13
mym;
Sincem;+m,=j, we must haven,=j,;,m,=j, whenj=j,+j,. There is then only one term in
the sum and the appropriate coupling coefficient is 1. Thus(Eg).holds trivially whenA = j,.
WhenA=j—j,;#j,, we have, in general, more than one term in the $L8. The equation

0="[(jomal(jama|IL o [jj)= (i1 my—15jo mylj Vj1(j1+1)—my(my—1)
+ (jamy;io my=1]j )Via(j2+1)—my(my—1) (14

implies that the Clebsch—Gordan coefficients satisfy the equation

(1 my— 155, mylj j) _ Jo(joa+1)—my(my—1) (15
(j1 My;jo m—1]j j) ji(j1+ D) —my(m—1)°
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and hence that

(1 ja—mia molj ) _ Ja(jo+1)=my(my—1) 16
(Jpli—n+1;j2 my—1]j j) 2nj;—n(n-1) ’
. (l1i1—mi2 mylj j) Ja(j2+1)—my(my—1)
lim —— = — = - , (17
jioee (1 1=+ 15, my=1]j j) 2nj;
wheren is in the range &n<2j,. It follows that, forA<j,,
_(jrda—mjemoljj) (=" .
lim ——————= 2j,) "2 +1)—AA+1)]™2, 18
T2 Al D~ g A ezt DA D] (18)
The coupling coefficients are normalized such that
> | (12 myij2 molj IP=1. (19

mpm;

This sum contains finitely many terms becaunseranges over finitely many values. Thus, using
Eq. (18), the only nonvanishing contribution to the above sum, in the ljmit o, is from the term
(j1d1:02 Alj i). Furthermore, we must hav¢j; j1:j» Alj j)|=1. Hence the highest weight
state approaches the simple form of Etp), i.e.,

j1.j—ee

ii)y — li2&)i1iv (20

and the proof is complete.
The converse result, that every product state of the |tyy€)|j,j,) becomes a highest weight
state|jj) with j=j,;+A asj,;—, is easily shown starting from the general expression

|12A>|jljl>=2 i+ A) (i1 iz Alj j1+4) . (1)

All of these asymptotic properties can be verified directly from the exact expréssion
(j1 Mysj2 M| D= (—1)lr~™

\/ (2J+ D)1 (Jrtj2= D+ m)!(jo+my)!
(Jatio I+ Dot DU —jatizt D (Gi—m) ! (jo—my)! -
(22

The above lemma can be seen as a special case 8y observing first that, for $8), .7
is the 1) C su2) subalgebra spanned By, so that the graded subspaced®tontain states of
a givenm value. Since the $8) coupling is multiplicity free, the subspaceé of Eq. (5) contain
a single s(@) unirrep and the subspawj contains only the highest weight state of the uniryep
Thus, in the notation of Sec. Il, E§12) is equivalent to the statement

lim Wi=vi2 gVt (23
. 171 I1
Jil1—>

C. Highest grade subspaces of rank N Lie algebras

Lemma 2:Let V* denote the carrier space for a unirrep®fof highest weightx and letw
be the tensor produdvV=V*2@V 1, Let WK be the “-invariant subspace dlV containing the
highest weight states of gra#te Then, the highest grade subspewkwkcw is given asymp-
totically by
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N1
Wk%vk n®Ving

as \;—o . (29
Proof: Sincewﬁ is the highest grade subspace of thiénvariant subspace/“C W, it follows
that, if | %) e WK, thene,|W)=0, Ve e./ ", . Let. % denote an s@) subalgebra ofs with a
positive roote; e 4, , where we recall thatZ, contains the positive roots of” which are
asymptotic for the irrep .
Sinceg|W)=0 for any|¥) e WE, it follows that W is spanned by a set of states which are
all highest weight states for unirreps of;. Moreover, sincey; e %, , it follows that such a
highest weight staté¥) is an asymptotic s@) highest weight state for the €) subalgebra
generated bg; andf; . Therefore, byLemma 1|¥)=|¢)|#) is a product of a statgp)  V*2 and
a stat€| ) € oj, where

o ={ly) eV &ly)=0} . (25
Since this result holds for allZ,C & with a; € .4, , and since
Vil =l eV jely)=0, Vaje £} (26)
it follows, in the asymptotic limit, that every state Wk lies in Vk D\ ]®V[A 1 The converse

likewise follows from the converse dfemma 1.This completes the proof.

The decomposition of a highest grade subspNﬁés a special case of E¢7) since, inWE,
a highest weight state for a unirrep 6f is also a highest weight state for a unirrep.of.
Therefore, we have, in the notation of H@),

=%} wWer [N =k . (27)

By the same argumenv[xl] is irreducible under7, since V! is irreducible unders. This

implies thatv[A ]=V)‘1 On the other handy2 is a sum of 7Z-irreducible subspaces

k=[]

Vi, ]—2 2 Legl=k=[\]. (28)
Now, Iet[V ®V“]w denote the7Z-coupled tensor product of irreduciblé’-modules, where

wisa hlghest welght for aZ-unirrep anda indexes its multiplicity in the tensor product space
V2 ®V§i. It follows from the lemma that

Ywy
vvk—E W2 X V]2 ®Viila,  [N]=k (29
Ywoo
and
A A A
we _)sza c. yapal Vi @ViTan (30)

whereC* is a pX p matrix which combines equivalent unirreps.&f.
Now, if 7 indexes a basi§¥**)} for W2*, we can write

W)= C L (Miisws jlak Dl@)2 DY), (3D)
Ywoa
ij2
where i indexes a baS|s{|w 1} for V}\l, j indexes a baSIS{|qo )} for VAZ , and
(N1 i;0, jla 7) is a Clebsch—Gordan couphng coefficient faf.
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The matrixC* depends only on the way in which the multiplicitigsand « of the 7Z-unirrep
\ are separated. Since this separation is arbitrary, there exists a chgi@ndir that will make
C™ diagonal. This implies a remarkable property of asymptotic coupling coefficients for basis
states of ¥ in WE: they can always be chosen to be equal to coupling coefficients for the
subalgebraz’C .

D. An example: su (3)

The coupling of two s(B) unirreps provides the simplest application of E2{L). For sy3), we
have a Cartan subalgehra with basis{h;,h,} and positive root\ ;, ={«@,,a,,a3}, wherea,
anda, are simple roots, anfk, ,e,,e3} are the corresponding raising operators. |h,zégt(,) denote
a state of weightr=(0%,0) of an sy3) unirrep of highest weighk, where 8 indexes multiple
occurrences of the weiglat; the labelB will be suppressed when not needed. The highest weight
state of the unirrep. = (\1,\?) will be denoted by\)=|¢)).

We will consider the tensor product of two(8) unirrepsh,® \ 4 in the limit in which, say,
the second componeig of \, is asymptotically large. Then7, ={a;}, %, ={a,, a3}, and. 7
is the subalgebra df” spanned bye,,f;,h;,h,}, wheree, andf, are root vectors corresponding
to the rootsa; and a_ 4, respectively.

We chooséh; andh, such that

[hi.e1]1=2e;, [hy,fi]=—2f;, [e;,f1]=hy, (32

and

hil )=o) . holwl,)=a?y,) . (33

J is then the direct sunvZ=su2)+u(l), where s(2) is the algebra spanned ley,f;, andh,,
and 1) is spanned byn,. Since states of a given grade have identical values?fwe can

identify the grade withr2.
The subspac&’?fl] contains states with the property

Vi =l eViielp)=0, i=23 . 34

States inVE‘)}l] are generated from the highest weight statg by repeatedly acting of\;) with

the lowering operatof,. Thus they carry a unirrep of angular momentjyv )\i/Z of su2) c.7
and a unirrep\4 of u(1) C.7. The statg\;—ra,) [see Fig. 1b)], which is obtained by lowering
r times from|\,), can be written, in anZ= su2)+u(1) basis,

A
|)‘1_ral>:|¢jllmlx§> , 35

wherem;=j,;—r.
The subspac(svl?zcv”2 has decomposition intoZ-irreducible subspaces given, in the nota-
tion of Eq.(28), by

vﬁzz%‘, V2, o?=1, (36)

jpo?

where the multiplicity labely of Eq. (28) is suppressed because the unirfep? occurs at most
once inVl)‘Z. An su2)+u(l) basis forVJ?‘2 , is then given b){|(p}\2m o) TMy=—]2, ... ,j2.}.
20 oMo

From Lemma 2 we know that a basis forvvt is given by products of the type
|<p;‘2m 2)|¢?1m \2)» With k=\%+ 0. These states can be combined to form a god@)swi(1)-

2M o 1M1ty
coupled basig| ¥ ;y} for WE with

M

—rl.M2 Jk_ : . A2 M
|\I’JMk>_[|(Pj202>®|lleAi)]M_m%z (j1mg;j myld M)|¢izm2”2>|¢11m1>\f> , (37)
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where (, my;j, my|J M) is an ordinary s(2) coupling coefficient. The (@) coupling is fulfilled
by the requirement thats+ o?=k.

SinceW{j is a highest grade subspace, ari2stiu(1) highest weight stat¢¥ ;,,) is also a
highest weight state for an @) unirrep of highest weight = (A*=2J,A?=k). We then have the
identification| ¥ ;30 =\ ).

Although the s®)+u(1) coupling is multiplicity-free, there may be more than dne;;,)
(and hence more than one occurrencgf) because, in genera‘V,f2 contains more than one
value ofj, such that the coupling,® j,— J exists. Since there is one copy|df ;) for everyj,
satisfying the above condition, an obvious way to distinguish these multiple copi#s gj is to
label them withj,. Highest weight states for the @)+u(1) unirrepJk will henceforth be denoted
|q'szJk>-

If p labels multiple occurrences of the(8uhighest weight statp\ ), the sef{|p\)} may still
differ from {|\Ifj2”k)} by an arbitrary unitary transformation; this is the mai@X of Eq. (31).

Thus, the identificatiop j,, which provides a convenient resolution of the multiplicities in the
No®N1—\ coupling, makes this matrix diagonal. Furthermore, for this choice, we have

. . . A
liM)= 2 (i1 muia mld Mg My o) (39)
mymy oMo JaMeAy

where 2=\' and\3+ ¢?=\2. Other states witlM + J are obtained by lowering with;, and we
have, in general,

A= > (j1 Myiio Mpld M)| g2

N
mymy 12m202>|¢j1m1)\f> ' (39
where M =17,

Thus, in the limit where one component bf becomes asymptotically large, we find that
su3) coupling reduces to $8)+u(1) coupling, with

(A1) 1m10§a)\2j2m20§|07\7)—>5p,12

5o§,>\§(j 1My, jomp[IM) (40

This conclusion is confirmed when we take the limit of the expressions obtained, for instance, by
Hecht for some s(B) coupling coefficientscf. also Rowe and RepRa
Suppose now that both componenis (A\%) of A, are asymptotically large. Sincgj 2=\}
and 2J=\1, the coupling coefficient appropriate to this case is obtained from4By by taking
the limit of the s@2) coefficient:

lim (Mj1m10'%,)\2j2m20'§|137\7')—’5p,j25u§,>\f X lim (jimg,j,m[IM) . (4D)
A A—® jl,‘]ﬁoo

In the next section, we show how Clebsch—Gordan coefficients of the typg (j,m,|IJM) can
be evaluated in th¢; —oo limit.

E. Asymptotic Clebsch—Gordan coefficients

Let & be a compact semisimple Lie algebra of rakand letV*1, V*2 be defined as before.

Lemma 3Let|¢) eV 2,|4) e V?flj_p, and assume thatis finite. Then, in the limit in which

\1—, the statd W) =|¢)| ) e V*2@ VM is such that
fl W)y —lo) )], Ve . (42)

Proof: Recall that /"_ contains root vectors whose corresponding roots are asymptotic for
N1—o0. Then, we have

fll Uy =[fl )+ o) Tl )] . (43
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We may assume, without loss of generality, tha) and |¢) are normalized states so that
lle)Z=Ill¥)]I?=1. Then

IEEHIE= [Tl )2+ 1Tl )] - (44)

Now

Ifd ) 12=(wlet vy = (wilex. fidl ) +led w)lI>=(ylhd v) +lled w)1? | (45)

which, since(#|h,| ) —c ask;— o, implies that
Ifdg)l> = as ny—oo. (46)

On the other hand|f,|¢)|? remains finite and the lemma is shown.
Two important properties for the norms of asymptotic states follow from this Iemma. First, set
|Wiy=|ei)|#;), wherei labels a basi§|¢;)} for V*2, andj labels a basi§|¢;)} for VA1 and

[A]-p’
consider the linear combination
|>:; cij| i) (47)

where c;; are complex coefficients satlsfymE,Jc,J =1, but otherwise arbitrary. Then, by
Lemma 3 it follows that||f,| ;)| is independent of. [Proof act on|®) to construct the nor-
malized statef,|®)/[|f,|®)] in terms of |¢;) and|y;). Since|¢;) is normalized, and since
E|JC|] =1, we deduce thdﬁk|‘/’]>”_”f |®>”VJ ]

Next it follows immediately from Eq(45) that||f,|®)| =||f| ¢J)|| is also independent of any
component ofx or \; that is asymptotically larggProof: Eq. (45) is unchanged if we use the
unirrep \; whose highest weight is related to the highest weighkt pby A;=\;+ A, whereA
=(64, ...,0,) contains only finite integerk.

Theorem 1Llet p be a finite integer. Then,

Wk p—>Vk [A1]®V[>\] pr @s Ni—© . (48

Proof: Let|qo)evk D] and| ) eV[A |-p- Assume the theorem holds for someand act on

|\If)—|<p>|¢/)ewk p With any f e " ,q>0. SinceWK is Z-invariant, we have, by Eq4),
f W) eWk p—q- and, byLemma 3and Eq.(4),

f |\I,>_)|(P>[f |l/f>] EVk [)\1]®V[)\1] p—q - (49)

Hence, if the theorem holds far, it holds forp+q. The seed of the recursion is Lemma 2, which
is Theorem 1 fop=q=0. Going over allf, in all ", completes the proof.

Consider, for example, the @) couplingj,®j; in the limit in which j;—o butj, remains
finite. Application of the theorem implies that, for a finite valuepgfthe state

i—p)= 2 (amyia mliji—p)liz.ma)lizmy) (50)

mp,my

becomes, in thg¢;— o limit,
li—p)—liz.i—ivlisji—p) (53)
It follows that, for finite p, the asymptotic S(2) coupling coefficients are given by
(Ja myii2 Moli j=P) =8, j,—p Omyi-iy - (52)

For an arbitrary compact semisimple Lie algebra, the highest grade states in the tensor product
spaceV*2® VM become, by Theorem 1, of the form
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Y2®2

NSRS P L1 [) Pe (53
(A)20'

in the asymptotic limit ;— oo, whereC* is a unitary transformation. If a particular resolution of
the multiplicity is chosen, equivalent to settipg= (y,w,0), such thatC* is an identity matrix,
then we have

|\P)Pi);>_>[|¢);§w2>®|(//))ti>]rr)\rr pE(‘}/zsz) (54)

and the 7Z-reduced asymptotic CG coefficients
(N1Y101,X2Y203llPAN) 6= 0 3, p.yp0p0 0 (55

in accordance with Eq31).
To obtain the asymptotic limits of coefficients {y;w1,\2v,w4| p\ yw),, for finite values of
[AN]—[w], let the state}\If”” Y be expressed in the form

YT

(W5 =[Pa(H)® W) ] 4 (56)

YT

where P,(f) is an.7-tensor of highest weight whose components are polynomials in the
elements of/"_ and we identify the multiplicity indexy with the pair of indicesifa). Then, in
the asymptotic limit,

[P0 = [Pu(H@Le}2, @[] o] aorr- (57)
Let ¢(Nq,w,;0\) be the phase factor for which

[e)2, ) @)= b1 haioN) 0l @)2, Mo (58)

Y292 Y292

Using Theorem 1 and setting=(y,w,0), we have

(W50 — d(h1,02500) X U(wohionikoa,01B0)[[Po(D @[50, ®1€02, ) o

Kwq

—>¢(7\1,w2?0'7\)’82 ¢(w2,wl;Kw)U(wz)\lwn;)\oa,wl,BK)Hcp};§w2>®|¢}r;llgwl>] Ko
le

(59

whereU(w,\ iwn;Noa,wBk) is a Racah recoupling coefficient fo#Z, and x labels multiple
copies ofw in the couplingw;® w,. In deriving Eq.(59), we have used properties of the norms
of asymptotic states discussed as corollaries of Lemma 3. Furthermore, wa giseo( label
multiple occurrences of,. Thus we find

(M17101 X 27202 pA y©) = 2 d(A1,02;00) (w2, 01;a0) U(whion;\oa,w;BK)
X Ml';)K X 5p,‘yzw2(r 57,na 5'}/1,11,81 as )\l_>ooa (60)

where the matrixM“ combines the equivalentZ-representations. Since this matrix depends
only on the arbitrary way in which the multiplicitiesand x of the.7ZZ-unirrepw are separated, we
setk=vy and choose the phases so thHt is the unit matrix. It then follows that theZ-reduced
asymptotic coupling coefficients for basis states ®fin WBHM], for finite values of[\]
—[w], are given simply by a recoupling coefficient for the subalgelfémes some phases, i.e.,
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(N 17101, 027205 pA y©) ;= p(N 1, 05;0N) P03, 01 aw)
><U(wz)\lwn;)\a'a,wlﬁy)5p'72w20 Sy na 571“3, as A;— .
(61)

Combining Eq.(59) with Eg. (61), we finally obtain the simple expression

|wer ) g{)()\l,wz;a)\)% d(wy,w1;k0)U(whjwNAoa,w, o)

YwWT

A

N
X [ | (’Dyiw2> ® | ¢n}3wl>] 7w75p,72w20' 57,na ' ash 1—® . (62)

IV. THE REAL SYMPLECTIC sp (m,R) ALGEBRAS

In this section, we discuss the generalization of the above results to noncompact semisimple
Lie algebras. For simplicity we restrict considerations tong®), although the results are much
more widely applicable. We also restrict considerations to products of harmonic series of
representation$2’ These representations, which include the positive discrete series, have lowest
weights but no highest weights. Thus we consider subspac#¥=0¥*2® V1 that are lowest
(rather than highestin grade.WCW is now the spf,R)-invariant subspace containing the
lowest weight states of grade and\/\l‘,j+p is the subspace alV* of gradek+ p.

A. Factorization for sp (1,R)
The elements of §f,R) satisfy

[‘]—"]+]:2JO! [‘]Ol‘]t]:i‘]:l (63)
with matrix elements given by

Jolimy=m|jm) , m=j,j+1j+2, ...,

Jelimy=(m+j)(m—j+1)[j,m+1) (64)

J_|jm)=(m—j)(m+j-1)[j,m—-1) ,

wherej=1,%3 ... . Now, consider the coupling of two harmonic series unirrgsj, with
ji—o and j, finite. It can be verified, e.g., by comparing the number of states of weight
=m,+m, with the number of states of weight—1, that

2®1=>(1tjde(ititDe(jatjt2)e - . (65
Next, consider the lowest weight stdtg ) of a subrepresentation in E¢5), with j=j,+j,

+s, wherej, ands=0 are finite, in the limitj;— . Write

=2 Gamyiamylij) iam)liimy) (66)

mymp

where (1 my;j, mylj j) is now an spl,R) coupling coefficient. If we usd_|jj)=0, we get

0= (jo m+1;j, my—=1[j j) V(my+1—jy)(my+j,)

+ (J My molj j) N(Ma—jo)(my+j,—1) .

This equation can then be rewritten as

(1 my+ 155, my—1]j j) _ (My—jo)(My+j,—1)
(j2 my;i2 mylj j) (m+1—j)(my+jqg)°

(67)

Sincem; +j,=2j, andj;—« while j, andm, remain finite, it follows that
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(1 Myt 155, my—1]j j)
(ix m;i2 mylj j)

—0 asj;—x. (68

If we now suppose thaltj,j+6)—|j2,j —i1)li1.j1+ ) asji—o, when s is some finite
integer, then, by acting o}j,j + &) with J, , we find, on the one hand,

J i, +8)=V(2j+8)(6+1)|j,j+6+1), (69)
while, on the other hand,
Jolliz =i+t OHI=V2j1+8(6+D|j2,i—iliz,irt6+1)
+V(2j,+9)(s+1)|j2,j—j1+1L)]j1.j1+ ) . (70)

Comparison of these equations gives

. (2]
ij+ot+1)= (21—+5|Jz, —iVlinitetl)
(2j,+s)(s+1)
mhz, —j1+Dlisj1t+ 6, (77)
and implies that
.+ o+ —lizj—jvlinjito+1), asji—e. (72)

Hence we have shown by recursion that the following holds:
Lemma 4:Let j=j,+]j,+s with s=0. Then, ifj, ands are finite,

lj.j+8)—=liz.i—ili1j1td) . asji—oe. (73

B. Asymptotic unirreps of sp  (m,R)

Every harmonic series representation ofsgg) is contained within the space of some A-
particle harmonic oscillator im dimensions''° For these representations, thersgiR) algebra is
realized as the set of bilinear products of creation and destruction operators:

2 blbl;,
A1
2 5 (blibaj+babl) (74)

A
Z Daibaj.i, j=1,...m.

Sp(m,R) and ugn) have a common Cartan algebra, spanned®y,i=1,... m}. Thus a
u(m) unirrep is labeled by a highest weight= (A%, ... A™) where\! is an elgenvalue daE;; and
A=\ However, the spt,R) unirreps we conS|der have no highest weight. The carrier spaces
of these spf,R) unirreps comprise infinitely many m) invariant subspaces each labeled by a
u(m) highest weight. The lowest of thesenu) highest weights uniquely characterizes the
sp(m,R) unirrep and will be referred to as the lowest weight of thengR) irrep.

We will consider states of sp{,R) unirreps in the limit where.\™— . This implies that all
the other components of are also asymptotically large.

There are two types of sp(,R) raising operators: the compact su( raising operators
{Cij;1<j<i=mj} and the noncompact raising operatfsg; ;1<i,j<m}. The action of am;
operator connects weights belonging to a(ilsR) chain. States of an §p,R) chain carry a unirrep
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of an spg1,R) subalgebra of spf,R). If such a unirrep is labeled by we define the corresponding
sp(1,R) chain of weights to be an asymptotic chain if and only-c as\—c. Moreover, we
note that, whem\™—o, all the{A;;} operators generate asymptotic chains. Thus, wién: o,
all the noncompact roots are i, .

Chains of weights associated with the compactgufoots are conveniently analyzed by
reexpressing a nf) weight A as an suf)-+u(1) weight with components \*—\2 \2—\3,
... A™I-AMAM The chains of weights associated with the compaan$upots then become
asymptotic when the differencas—\'*? of consecutive components of am) weight become
large.

We assume, for the moment, thdt-\'"* remains finite for ali, so that”, contains all the
positive sufn) roots; i.e., %, contains the compact positive roots ai#d contains the noncom-
pact positive roots. We then hav&= u(m), and sptn,R) (or, more precisely, its complex
extension has the graded decomposition

SAMR) =%+, +%_, (79

where 7 is the ugn) subalgebra spanned by the;;}, /v, is spanned by the raising operators
{Ajj}, and2_ is spanned by the lowering operatdi8;;}. The grade is conveniently identified
with the eigenvalue of the operator

The lowest grade subspab%] of an sp(,R)-irreducible vector spac¥” is defined as the
subset of states that are annihilated by the elements_of

Vi =iy eVh; Byly)=0, VBje s} . (77)

If one or more of the suf)) labels\' —\' ** becomes asymptotically large, thefi, and .~
must be shrunk and expanded accordingly. However, as the process of dking “com-
mutes” with the process of taking any suj label to~, we will assume henceforth that all the
A =\"1 are finite, knowing that the extra simplifications that arise should one or mone) su(
labels become asymptotically large can be made once the analysis of tha Taligeit has been
completed.

C. Lowest grade subspaces of sp (m,R)

Lemma 5:Let V* denote the carrier space for a unirrep ofrafg) of lowest weight\. Let
WKC W be the sp,R) invariant subspace &f/=V*2® V*1 containing the lowest weight states of
grade k, where k=[\{]+[N,]+s, with s a finite integer. Then, the lowest grade subspace
WEC WK is given asymptotically by

N2 gy

k 1
Wk_’vk—[)\l] [A\q]?

as\y'—o . (79
Proof: The proof parallels that given for Lemma 2 and is omitted.
It is possible to use this lemma to derive asymptoticngR) coupling coefficients. Since
/= u(m) in the \'—o limit, it follows, in the notation of Eq(31), that a basig|W**)} for
WPACWE is given by the states

[P = 2 C) e (N1 iiws jlaw D]@)2 D), (79
Ywoa
ij

wherea labels the multiplicity of the uf) couplingw,®X\;— X\, i indexes a basi§ 1#?1}} for the

u(m) unirrep\4 in V[xll], j indexes a basi§ <p§f02j)} for the yth copy of the ufn) unirrep w, in

Vﬁi[?\ﬂ’ and (\; i;w;, jlaw 7) is a u(m) Clebsch—Gordan coupling coefficient.

The derivation of Eq(79) is identical to the derivation of Eq31) and therefore omitted.
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D. Asymptotic states of sp (m,R)
Lemma 6:Let |) e VM and|¢) eVE‘fZHq be normalized states, wheggis a finite positive

integer. Then, in thaT'— limit, the state] V) =|¢)|#) e V*2@ V™1 satisfies
AP = o)A, Yij . (80)

Proof: We have

A Y=[Aile)] [4)+ o) Aijl )] (81)

and, sincd¢) and|y) are normalized states,
A=A L)+ A; )] (82

To evaluatg|A;;| ¢)||, observe that

A 12= 1By A1 ) + 1By | )17
=(y|Cii+Cjj+28;Cii| )+ By | )% . (83

Since

(YICii| )= (| Crnnd ) =NT', (84)

it follows that||A;;|#)[|>—c as\]—c. On the other hand, fdrp) eVE‘fz]Jrq, with g finite, the

norm||A;;| )| remains finite. Hence we hayé;|¥)||—||A;;| )| and the proof is complete.
Theorem 2:n the N}'— oo limit,

Wi pHV)k\E[xl]‘X’VE\)}al (85)
for finite values ofp.

Proof: The proof is by induction, starting with Lemma 5. It parallels that for Theorem 1, but
uses Lemma 6 rather than Lemma 3 to iterate between the graded subspaces.

Asymptotic coupling coefficients for the largg" limit of sp(m,R) can be derived in the
manner of Sec. lIl E, provided that the polynomig(f) appearing in Eqs56), (57), and(59) is
replaced by the corresponding polynonfa(A) in terms of raising operators. Thus in th§—
limit and for finite values of w]—[\], wherew and\ label unirreps of uf), the staté\lf’;);r) is
given by Eq.(62), where all coupling and recoupling coefficients arenj(coefficients.

V. sp(m,R) TENSOR OPERATORS

In this section, we extend the results on rspRR) to the coupling of a nonunitary finite-
dimensional representation of sp({R) to a unitary infinite-dimensional representation. Interest in
such couplings arises because tensor operators often belong to finite-dimensional irreps.

A. sp (1,R) tensor operators

The cgmponent$T~#;ﬁ1= -7, ... ,+T} of a finite-dimensiona(nonunitary sp(1,R) tensor
operatorT! are relatetf by the equations

L. Th=5JT=mT=m+TL, |

[Jo, TL]=mTL. (86)

The decomposition of the coupling®j, wherej is the lowest weight for a unirrep, can be
inferred by simply counting the number of states with a given welghtm-+ m. This shows that
T®j is the finite sum of unitary irreducible representations
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Tej=li-Tleli-T+1le--alj+]|. 87
We are interested in the lowest weight states of these couplings, which we express in the form
[Tiel3=2 (i mT M3 7L [im) . (89)
m,m
Applying the lowering operatod_ to Eqg.(88), we get

0=> (jm-1;7 m+1)3 Y[3_,TL J|jm-1)

m,m

+3 (G mT W9 TL [ [jm)] (89

m,m

from which it follows, using Eqs(64) and(86), that

0=\(J+m+1)(J—m) (j m=1:] m+1|3 J)

+(m=j)(m+j—1) (j m;T m|J J) . (90)

Combined with the fact that there are finitely many coupling coefficients whisrfinite, Eq.(90)
can be used to establish that

- 1 \™! -
(jm;jm|JJ)Hk(—) (Gj:73-jl93), asjoex, (91)

V2j
wherek is some finite constant. It then follows that
[T 3—-Tilij) . asj—e. (92)
Furthermore, since
I [T elN3=V2IT )31 =13+ T i)+ Th 3. ii)]

= NT -3+ DT HI-j+ DT i+ V20Tl +1), (93

we have
[T o321 Th [Li+1), as j—o. (94)
By acting now orl[TT®|j>]j+l with J, , we find, in the same manner, that
[TT®|J'>]§+2—’TLJ|J'11j1+2> , asj—o. (99

These are the first two steps of an inductive proof of the following lemma.
Lemma 7:For finite values off ,

[TI®|))3:s—Ti li.i+d), as j—o. (96)

B. sp (3,R) tensor operators

The coupling of an §3,R) tensor operatofl"’:, that transforms according to a nonunitary,

finite dimensional representation to a unitary asymptotic irrep of sp(3,R) can be reduced as
follows.
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Let us denote by\) the character of the $p,R) irrep with lowest weightx and by{\}
={\1,A2\% the character of the (3) irrep with highest weight = (A1, \2,\%). Then, for\3
=3, the SP3,R) — U(3) branching rule is given in terms of charact&tay

SH3,R— U(3) ; (\)y—{\}-{D}, (97)
whereD denotes the sum of @3) irreps with character
{D}={0}+{2}+{4}+{2,2+{6}+{4,2+{2,2,2+--- . (98

Let
(x)»% Mp{wp} = % Mylwp, 03,03}, (99)

denote the decomposition of the char@g:teid:ito its U(3) characters{wp}z{cu,lJ ,wf, ,wg}, where
m, is the multiplicity of w,, in N. Since is finite dimensional, the sum in E¢Y9) will contain

finitely many U3) unirreps. Then, ifX )-(\;) denotes the character for the tensor produgh
of a finite S§3,R) irrep (\) and an infinite unitary irrepX;), we have

Sp(3,R— U(3) ; <X>-<xl>HEp my{wp}-{\1}-{D} . (100

By comparing this expression with E(7), we deduce that an S R) unirrep with lowest weight
N will occur X p;m, X p, times, wherep, is the multiplicity of the U3) highest weightx in the
reduction of the WB) productw,®\4; i.e., if

<>\>H% my{wp}  and {wp}-{M}:; priA} (10D

then
<X>-<M>=§ Mppr(N) - (102

Lemma 8:Let T be an sfB3,R) tensor operator, and l&t*1 be defined as usual. L¥¥*CW

be the sfB,R) invariant subspace &V=T"® V1 containing the lowest weight of grade Then,
the lowest grade subspaW;[jCWk is given, in the limit where\f—wo, by

W= Tk ® Vi (103
whereTﬁ_[m is the subspace df* spanned by the components Bf with gradek—[\,].

Proof: Let {A;;,Bj;,[Aj;,Bj;]} denote a basis for7;;, the sg1,R) subalgebra of §8,R)
generated byA;; andB;; . SinceWE is a lowest grade subspace of th€3p) invariant subspace
WKC W, it follows thatBj;| W) =0 for any|¥) e W§. ThusWj is spanned by a set of states which
are all lowest weight states for unirreps .of;; . If |P) is such a lowest weight state, it is, by

Lemma 7, a produdt\lf)zTg |4y of a state]) e o; and a component of\, where

o ={l¥) eV Byjly)=0} . (104
Since this result holds for allZ; , and since

ViL ={lw) Bylyy=0:¥ ij} (105

A

L and the proof is

it follows that, in the asymptotic limit, every state WE lies in T,ﬁ_[m®v
complete.
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Now, if « labels the componen{§§pwpa} of the U(3) tensorT§p . whose components are a

w

subset of components of the(8fR) tensorT*, we have

N A
T pal W5y €WK, k=[@p]+[\4] (106
where 8 labels basis state{$¢gl)} in V?fl]. Furthermore, since
X _ X
(A 'T7p“’p“]_ yrglgf Cyp“’p“'V/“"ﬁ'TV’w’B’ ' (107

and, for finite values ok, the coefficientsypwpw,w,ﬁ, are finite for all values of the indices, we
immediately find that

5N A 'Y A A
AT e U =T oo Al Vg eV, (108
since, as seen befodbé\g|¢>||—>oo in the \3— 0 limit. From this, we now have

Theorem 3in the A\j—2 limit of A\,

x by
Wi q= T ®Vin g - (109
Proof: The proof is once again inductive starting this time with Lemma 8 and using1B8§).
to step between the graded subspaces. The details are omitted.
Using the theorem, we find, in the notation of E2), that

I\P%Jw(xl.wp:ox); P(wp,01;70) U(w\jon\oa,0:8y)
w71

'Y A
XT3 0 @b vor Bpygops Oynar @S Ao, (110

where the coupling is a(8) coupling, andJ is a Racah recoupling coefficient fof3).

VI. DISCUSSION AND CONCLUSION

In this paper we have investigated the properties of asymptotic representations by looking at
matrix elements of some ladder operators of semisimple Lie algebras. Ladder operators are natu-
rally associated with gradings of representations. Thus we have made use of the fact that a
contraction, corresponding to an asymptotic limit-oo, preserves a suitably defined graded
structure of a Lie algebra and its ladder representations.

The formalism singles out a subalgebaC 2 which, by construction, contains all the ladder
operators of¢ with finite matrix elements. We have shown that, in the asymptotic limit;as oo,
the basis stateél\lf‘;ﬁn)}, for which [A]—[w] is finite, for the tensor product spade=V*2
® V™1, depend only on the coupling and recoupling coefficientsZofThus a major result of this
paper is given by Eq62)

YT

|‘P”)‘ y— (ﬁ()\l,wz;o)\)ﬁE d(wy, w1 kw)U(woNjoN)Noa,w;Bw)
w1

N A
X [|¢y§w2> ® | lpnéwl)] Yot 5p,'yzo)20' 5y,na ’ aS)\l_)oo ’
where ¢(N1,w,;0N) and ¢(w,,wq;yw) are phase factors and(wo\jwn;Noa,w1By) is a
Racah coefficient forZZ. In deriving this explicit expression, we have made use of a result, given
in Sec. Il C, that the arbitrariness of separating multiple copies of equivalent irreducible subrep-
resentations in the tensor product® \ ; has a natural resolution in the —ce limit.
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In the\;— o0 limit, a unirrep of a semisimple Lie algebfa approaches gossibly reducible
representation of a contractiofi® of .. Consider, for example, a representation of th@sLie

algebra
[‘J+=‘J7]:2‘J01 [‘]O!Ji]:i‘]i (111)
with angular momentunj and basis state§/jm)}. Let 7. and.7 denote the renormalized
operators
T = g (112
P 2 + \Ej y . J .
In terms of these operators, the(8ucommutation relations become
1 , T
[(j+ 1,}*]_’y1 [’71<(//i]_ +—. (113)

J

Thus, in the asymptotic limit ag—<c, we obtain the nonli—Wignert? contraction of s(2) to a
Heisenberg—Weyl algebra with

[Z+ 12*]271 [i,ji]=0 . (114)
The latter algebra is more usually expressed in terms of harmonic oscillator raising and lowering
operators

[c.c’]=1, [Z.c]=[l,c']=0. (115

Note also that we still have the commutation relation
[Jo.7:1=% 7+ (116

which can be compared with the harmonic oscillator equations

[H.c]=c", [H.c]=-c, (117
with H=c"c.

The way in which the statggjm)} of the sy2) representation approach those of a harmonic

oscillator is given by the identification

lim)=|n) , with n=j—m. (118

As j—oo, we have, for small values of,

/1
n)= 2—J.n(2j+1) In—1)—+n [n—1) ,

1
F-Iny= \/2—j<21—n><n+1> In+1)—Vn+1in+1),  Zlny=nln). (119

T+

Thus we obtain the correspondence
Zy—c, FZ.—c', T=1, Zy—clc (120

valid whenevern<j. In terms of special functions, the contraction of spherical harmonics to
Hermite polynomials can be found in Ref. 13.

Note that such a contraction of a semisimple Lie algebra is not semisimple. Since represen-
tations of the non-semisimple algebra can be obtained as asymptotic limits of those of the semi-
simple algebrds, we candefinethe coupling of an irrep of/° to an irrep of¢ as the asymptotic
limit of the coupling of irreps of. Asymptotic coupling coefficients of” are precisely the
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coupling coefficients for the coupling®x & — <°°. Furthermore, the renormalization of the Lie
algebra implies a renormalization of the representation labels,cfo that the labels specifying
representations df ¢ can take finite values. Thus we have the remarkable fact that the asymptotic
coupling coefficients become exact fgr°x & — ¢, even for finite values of the representation
labels of £°°.

The Clebsch—Gordan coefficients for the coupling of two irrepsp\,, of £°€ are given
precisely by the double limik,,\,—o of Clebsch—Gordan coefficients far. Unfortunately, it
appears difficult to compute such coefficients within the current formalism.

In a previous work? we obtained asymptotic Clebsch—Gordan coefficients for th{#8) su
Dsa3) subalgebra chain by a projection method. This projection method is different from the
technique presented in Sec. lll E. Nevertheless, it shares a “factorization” property with the
current work. To be precise, it is implicit in Ref. 14 that

1ol )l
1ol )l

where| ) e VM and| ¢) e V*2 as usual, and whe®, is the»=0 component of an £8) C su3)
tensor operator. This leads immediately to the factorization

Qol¥)—|@)[Qol¥)] asnj—e (122

which can be compared with E¢42) for components ofZC ¢ tensors. However, unlike the
Z/C ¥ tensors, not all components of the(3uquadrupole momen®, satisfy Eqg.(122 in
general. Thus it would be interesting to know if asymptotic coupling always implies such a
factorization of some matrix elements and if, conversely, such a factorization implies asymptotic
coupling.

Asymptotic Clebsch—Gordan coefficients have so far been used to analyze coupled systems
having two different scales. For instance, in some core-plus-particle models of the nucleus, the
so-called “collective” part of multipole operators can dwarf the single particle contribution, so
that Egs.(42) or (122 are true to a first approximation. The eigenfunctions of such two-scale
systems are often found, to leading order, by using the Born—Oppenh@@gapproximation->
This suggests a useful parallel between the physically insightful BO approach and the mathemati-
cal technique of asymptotic couplii§lt remains to see if this parallel extends to higher orders,
i.e., if corrections to the BO wave functions have a corresponding group-theoretical interpretation
in terms of corrections to the asymptotic limit.

Finally, an obvious question which remains unanswered in the present work is the evaluation
and properties of asymptotic coupling coefficients for finite values of the dkafldn Ref. 14, we
computed s(2)Du(1) Clebsch—Gordan coefficients for finite value of the projectiom the limit
wherej—«. This was done by embedding thélysubalgebra so that the set of states obtained
from the highest weight state by the action of all elements of the correspondit)gsubgroup
spanned the whole &) representation. In contrast, the theory and examples presented in the
present paper are closely related to the work found in Ref. 8, where the subalgeboes not
connect states in a unitary representatiorrydfiaving different grades. This suggests that different
embeddings of7Z, when equivalent, will yield results applicable to different ranges of values of

[w].
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