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Geometric Phase of Three-Level Systems in Interferometry
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We present the first scheme for producing and measuring an Abelian geometric phase shift in a three-
level system where states are invariant under a non-Abelian group. In contrast to existing experiments and
proposals for experiments, based on U(1)-invariant states, our scheme geodesically evolves U(2)-invariant
states in a four-dimensional SU(3)/U(2) space and is physically realized via a three-channel optical
interferometer.
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Cyclic evolution of a wave function yields the original
state plus a phase shift, and this phase shift is a sum of a
dynamical phase and a geometric (or topological, or quan-
tal, or Berry) phase shift [1,2]. The geometric phase shift
is important, not just for quantum systems, but also for
all of wave physics. Thus far, controlled geometric-phase
experiments, both realized and proposed, have been ex-
clusively concerned with the so-called Abelian geometric
phase arising in the evolution of U(1)-invariant states, for
example, states of the Poincaré sphere [in the case of SU(2)
states] [3,4], the Lobachevsky plane [5] [in the case of
SU(1,1) states], and �2 (for the Aharonov-Bohm phase)
[1]. Here we introduce an optical scheme to produce
and detect an Abelian geometric phase shift which arises
from geodesic transformations of U(2)-invariant states in a
four-dimensional SU(3)/U(2) space. This scheme employs
a three-channel optical interferometer and four experimen-
tally adjustable parameters to observe the geometric phase
in its full generality.

Geometric phases in SU(3) systems have been the sub-
jects of recent mathematical studies [6,7] and establish the
geometric phase shift expected for the cyclic evolution (up
to a phase) of a three-level system. We propose to obtain
this evolution using an interferometer as a sequence of uni-
tary transformations given by optical elements. An optical
SU(3) transformation can be realized by a three-channel
optical interferometer [8]. The space of output states of
the interferometer can be identified with SU(3)/U(2), and
0031-9007�01�86(3)�369(4)$15.00
will be referred to as the geometric space; this space is a
generalization of the Poincaré sphere to a three-level sys-
tem [7]. By adjusting the parameters of the interferometer,
the output state can be made to evolve cyclically, up to a
phase, through a triangle in the geometric space. The out-
put of the interferometer may be any state along a path in
SU(3)/U(2), determined by fixing the four free parameters
of the interferometer.

It is important to distinguish the evolution of states in
the geometric space SU(3)/U(2) from the transformations
of the optical beam as it progresses through the inter-
ferometer. It will be shown later how the dynamical phase
associated with these optical transformations can be elimi-
nated. The cyclic evolution described in this paper occurs
in the geometric space, and the geometric phase of interest
is related to this evolution. We provide here the essential
elements to obtain this evolution as well as to explain how
to design the interferometer.

It is sufficiently general to consider the input state cin

of a photon into one of the three input ports and the vac-
uum state into the other two ports. The parameters of the
interferometer can be initially set such that the resultant
SU(3) transformation is the identity, and thus the inter-
ferometer output state c �1� is also one photon at the cor-
responding output port and the vacuum at the two other
ports. These parameters can then be adjusted to evolve the
output state along a trajectory in the geometric space; this
evolution may involve both a “dynamical” phase shift and a
© 2001 The American Physical Society 369
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geometric phase shift. Care must be taken when inter-
preting the adjective dynamical. The output state does
not evolve according to Schrödinger dynamics but instead
follows a path in the geometric space parametrized by an
evolution parameter s, which is a function of the adjustable
parameters of the interferometer.

The dynamical and geometric phase-shift contributions
must be separated to obtain the geometric phase. A spe-
cial role is played by geodesic evolution [9]; by transform-
ing the output state along geodesic paths in the geometric
space, the geometric phase shift along each path is zero.
Thus, we consider three arbitrary states �c �k�; k � 1, 2, 3�
in the geometric space which define a geodesic triangle
(i.e., with sides given by the unique geodesics connect-
ing these states). The parameters of the interferometer
are adjusted to evolve the output state along this general
geodesic triangle c �1� ! c �2� ! c �3� ! c �4� � eiwg c �1�,
where wg is the total geometric phase gained by cyclic
evolution and depends on four free parameters of the in-
terferometer. Figure 1 gives a diagrammatic depiction of
this scheme.

The evolution of the state c �1� to the state c �4� �
eiwg c �1� via three geodesic paths in the geometric space
can be described by three one-parameter SU(3) group
elements �Ug

k �sk�; k � 1, 2, 3�, with sk an evolution
parameter. These transformations satisfy the conditions
that U

g
k �0� is the identity element and

U
g
k �s0

k�c �k� � c �k11�, k � 1, 2, 3 , (1)

for some fixed values �s0
k�. It is always possible to choose

unit vectors c �k� such that �c �k11�jc �k�� is real and positive.
We consider evolutions U

g
k �sk� of the form

U
g
k �sk� � Vk ? Rsk ? V21

k , (2)

with Vk an element of SU(3) satisfying �c �k�jU
g
k �sk�jc �k��

real and positive, and
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FIG. 1. The geodesic evolution in the geometric space is de-
picted diagrammatically. By adjusting the parameters of the in-
terferometer, the output state in the geometric space can be made
to evolve along geodesic paths, from one vertex to the next, until
the triangle is closed. The SU(3) transformations U

g
k �sk� map

the output state along the geodesic paths in the geometric space.
370
Rsk �

0
B@ cossk 2 sinsk 0

sinsk cossk 0
0 0 1

1
CA . (3)

The form of the one-parameter subgroup Rsk with real
entries was guided by the definition of a geodesic curve
between two states c �k� and c �k11�, which can be written
in the form [7]

c�sk� � c �k� cossk

1
c �k11� 2 c �k��c �k11�jc �k��p

1 2 �c �k11�jc �k��2
sinsk (4)

with 0 # sk # s0
k � arccos�c �k11�jc �k��. It is straightfor-

ward to show that any U
g
k �sk� of the form given by Eq. (2)

satisfying �c �k11�jc �k�� real and positive gives evolution
along a geodesic curve in SU(3)/U(2).

Consider the three states

c �1� �

0
B@ 1

0
0

1
CA � e2iwg c �4�, c �2� �

0
B@ coss0

1

sins0
1

0

1
CA .

c �3� �

0
B@

coss0
1 coss0

2 2 eia sins0
1 sins0

2 cosb
sins0

1 cos0
2 1 eia coss0

1 sins0
2 cosb

sinb sins0
2

1
CA , (5)

with s0
1, s0

2 , a, and b arbitrary. These three states form
the vertices of the geodesic triangle in the geometric
space. They are sufficiently general to include all types of
geodesic triangles [7].

Although the three-channel interferometer can be ex-
pressed as an SU(3) transformation [or sequence of SU(3)
transformations], the optical elements of the interferome-
ter are composed of beam splitters, mirrors, and phase
shifters. Provided that losses can be ignored, each of these
optical elements can be associated with an SU(2) unitary
transformation [10,11]. It is therefore advantageous to fac-
torize each SU(3) transformation into a product of SU�2�ij

subgroup transformations mixing fields i and j: first, an
SU�2�23, followed by an SU�2�12 and completed by a final
SU�2�23 transformation [12]. Such a factorization makes
the experimental design of the interferometer clear: fields
2 and 3 are mixed followed by a mixing of the output field
2 with the field in channel 1, and, finally the output field 2
is mixed with field 3.

The SU�2�12 matrix Rs in Eq. (3) is a special case of
the generalized lossless beam splitter transformation for
mixing channels 1 and 2. More generally a beam split-
ter can be described by a unitary transformation between
two channels [11]. For example, a general SU�2�23 beam
splitter transformation for mixing channels 2 and 3 is of
the form

R23�ft, u, fr� �

0
B@ 1 0 0

0 eift cosu e2ifr sinu

0 eifr sinu e2ift cosu

1
CA , (6)
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with ft and fr the transmitted and reflected phase-shift
parameters, respectively, and cos2u the beam splitter trans-
mission. A generalized beam splitter can be realized as a
combination of phase shifters and 50�50 beam splitters in
a Mach-Zehnder interferometer configuration.

It is useful at this point to consider the nature of the
geodesic transformations U

g
k �sk� and their realization in

terms of optical elements. The interferometer can be ad-
justed to transform the input state cin to an arbitrary output
state c�s� anywhere along the geodesic triangle. This op-
tical transformation can be related to an SU(3) transforma-
tion in the geometric space, which maps c �1� to c�s� along
a geodesic path. It is important to distinguish between the
optical evolution through the interferometer from cin to
c�s�, and the geodesic evolution in the geometric space
from c �1� to c�s�. The goal of the following is to construct
optical transformation in terms of SU(2) elements which
realize the geodesic evolution in the geometric space by
appropriately adjusting parameters.

It will be convenient to express c �3� as
�eij cosh, ei�j1x� sinh cost, sinh sint�T , where j, h, t,
and x are functions of s0

1, s0
2, a, and b, the parameters of

c �3� in Eq. (5). Following our factorization scheme, the
geodesic evolution operators U

g
k �sk�, connecting c �k� to

c �k11�, can be expressed as

U
g
1 �s1� � Rs1 ,

U
g
2 �s2� � Rs0

1
? R23�a, b, 0� ? Rs2 ? R21

23 �a, b, 0� ? R2s0
1
,

U
g
3 �s3� � R23�x, t, 2j� ? R2s3 ? R21

23 �x , t, 2j� , (7)

with Rs given by Eq. (3), the parameters sk ranging from
0 # sk # s0

k , and s0
3 � h. Note that s0

3 and, in fact, all
the parameters of U

g
3 �s3� are fixed by the requirement that

c �4� � eiwg c �1�. Also note that, for each k, U
g
k �0� is the

identity in SU(3) and U
g
k �s0

k�c �k� � c �k11� as required.
Once it is observed that �c �k11�jc �k�� � coss0

k , it is trivial
to verify that each evolution satisfies Eq. (4) and is there-
fore geodesic.

The geometric phase for the cyclic evolution c �1� !
c �4� is given explicitly by

wg � j � arg�coss0
1 coss0

2 2 eia sins0
1 sins0

2 cosb� . (8)

This phase depends on four free parameters in the experi-
mental scheme: s0

1, s0
2, a, and b, which describe a general

geodesic triangle in SU�3��U�2�.
The interferometer configuration for realizing the

necessary evolution about the geodesic triangle is depicted
in Fig. 2. This configuration consists of a sequence of
SU�2�ij transformations, which are physically realized
by generalized beam splitters (e.g., Mach-Zehnder in-
terferometers). We use the shorthand notation Vi �
�ai , bi , gi� to designate the three parameters associated
with a generalized beam splitter. The three-channel
interferometer consists of a sequence of nine SU�2�ij

transformations. The field enters port 1in, and the vacuum
state enters ports 2in and 3in. By adjusting the parameters
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FIG. 2. The SU(3) interferometer is depicted, with three input
ports 1in, 2in, and 3in, and three output ports 1out, 2out, and 3out.
There are nine beam splitter transformations with parameters
s1, s2, s3, V1 � �a, b, 0�, and V2 � �x, t, 2j�. For geodesic,
cyclic evolution of the output state, only four parameters are
independent.

of the interferometer, the output state can be made to
evolve along the geodesic triangle c �1� ! c �4� in the
geometric space. We now consider how to measure the
geometric phase as a function of the four free parameters
s0

1, s0
2, a, and b describing a general geodesic triangle.

One check on the proper functioning of the interferome-
ter is to place photodetectors at the ports 1out, 2out, and
3out. The measured photodistribution for any output state
can be compared to the predicted output c�s� of the inter-
ferometer. In particular, for cyclic evolution to the output
state c �4�, there should be no photons exiting ports 2out
and 3out regardless of the settings of the free parameters.

Consider the cyclic evolution of the output state to the
state c �4� � eiwg c �1�. A key technical challenge is mea-
suring wg, because one must have a reference state with
which to interfere the output state c �4�. The input state
cin is a poor choice, because the relationship between cin

and c �1� involves an optical dynamical phase due to evo-
lution through the interferometer. However, this optical
phase can be eliminated through the use of a counterpropa-
gating beam, described below.

A scheme for conducting such an experiment is depicted
in Fig. 3. The source (a laser, for example) produces a po-
larized, stable, coherent beam of light which is split at a
polarization-independent beam splitter. One beam travels
to input port 1in as shown in Fig. 2 and passes through the
interferometer, exiting at output port 1out. The other beam
is first “rotated” to an orthogonal polarization; it then en-
ters port 1out and counterpropagates through the interfer-
ometer, exiting at port 1in. The orthogonal polarizations
of the two counterpropagating beams ensure that they do
not interfere with each other inside the interferometer.

At the ports 1in and 1out, there are polarizing beam
splitters which deflect the outcoming beams but do not
affect the propagation of the incoming beams. The
output beams are directed to a beam splitter where they
are made to interfere. The optical dynamical phase shift
accumulated by each of the two counterpropagating beams
through the SU(3) interferometer is identical, because of
371
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FIG. 3. In the interferometric scheme for detecting the geo-
metric phase shift, the source (S) field is split by a 50�50 beam
splitter into two identically polarized output fields with equal
amplitudes. The polarization of one output field is rotated to an
orthogonal polarization, with the polarizer rotator represented
by a hexagon. One field is injected into port 1in of the SU(3)
interferometer in Fig. 2, and the orthogonally polarized field
is injected into port 1out at the other end of the interferometer.
The output fields exit ports 1out and 1in, respectively, and are
separated from the input fields by polarizing beam splitters at
each of the two output ports, followed by mixing at a 50�50
beam splitter.

the time-reversal invariance of the Hamiltonian describing
the evolution within the interferometer. Thus, the optical
phase shifts cancel in the interference. Unitarity of the
interferometer transformation guarantees that the geo-
metric phase shift is wg for one beam and 2wg for the
other beam. Thus, the two beams interfere with relative
phase 2wg.

By measuring the geometric phase wg for various set-
tings of the free parameters of the interferometer, it is pos-
sible to explore the geometric space with the most general
geodesic triangles. The observed values can then be com-
pared to the theoretical predictions.

If the source in Fig. 3 is a laser, operation at a low-light
level can be undertaken to verify that the geometric phase
shift is wg even if the probability of more than one photon
being present within the system is negligible. Low-light
level operation, in the regime where the presence of more
than one photon in the entire apparatus at any time is
negligible, enables the testing of the geometric phase shift
even when the discreteness of the field energy cannot be
ignored [13].

A variation of the scheme in Fig. 3 can also be con-
sidered to verify that the geometric phase occurs for each
photon. Kwiat and Chiao [4] conducted a measurement
of geometric phase by employing parametric down-
372
conversion (PDC), with a UV-pumped KDP crystal, to
produce photon pairs. One photon undergoes a geometric
phase shift, and the second photon in the pair is employed
as a gate to register the event. By repeating this process
for many “single” photons, conditioned on detection of the
gate photon, where the photon passes the first beam split-
ter in Fig. 3 and has an equal probability of propagating
or, in an orthogonally polarized state, counterpropagating,
through the three-channel interferometer, an interference
pattern can be built up one photon at a time to establish
that geometric phase is imposed one photon at a time,
following Dirac’s dictum that “each photon interferes
only with itself” [14].

Although SU(3) interferometry has been considered in
detail, the methods employed here can be extended to
SU�N�, or N-channel, interferometry [8]. The schemes
discussed above employing such a device would produce
and enable observation of the geometric phase shift for
geodesic transformations of states invariant under U�N 2

1� subgroups of SU�N� states in the 2�N 2 1�-dimensional
coset space SU�N��U�N 2 1�.
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