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It is shown that optical experimental tests of Bell inequality violations can be described by SU~1,1! trans-
formations of the vacuum state, followed by photon coincidence detections. The set of all possible tests are
described by various SU~1,1! subgroups of Sp(8,R). In addition to establishing a common formalism for
physically distinct Bell inequality tests, the similarities and differences of post-selected tests of Bell inequality
violations are also made clear. A consequence of this analysis is that Bell inequality tests are performed on a
very general version of SU~1,1! coherent states, and the theoretical violation of the Bell inequality by coinci-
dence detection is calculated and discussed. This group theoretical approach to Bell states is relevant to Bell
state measurements, which are performed, for example, in quantum teleportation.
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I. INTRODUCTION

The controversy regarding the completeness of quan
mechanics@1# was presented in the framework of entangl
spin-1/2 particles@2#. This context proved to be convenie
for Bell’s development of an inequality to test the postula
of local realism@3–6#. Recent quantum optics experimen
designed to test Bell inequalities, involve pairs of photo
that are produced from the vacuum state, generally by op
parametric downconversion~PDC!. PDC offers significant
advantages over the earlier atomic cascade approach to
erating photon pairs@7#; these advantages include conserv
tion of energy~hence correlation frequencies of the two ph
tons!, conservation of linear momentum~hence correlated
wavelengths and direction of propagation!, and conservation
of angular momentum~hence correlated polarizations!, as
well as near simultaneity of the emission of the two photo
in the pair @8#. In addition to PDC acting as a source
correlated pairs of photons, there exists a scheme for w
the photon pairs are in a polarization-entangled state@9#.
PDC has enabled accurate tests of local realism versus q
tum theory to be performed@9–18#.

It is common to treat the input state for optical Bell i
equality measurements as the singlet state

ucsinglet&5~ u1& ^ u2&2u2& ^ u1&)/&, ~1.1!

corresponding to an entanglement of vertical~1! and hori-
zontal ~2! polarized photons in a net zero-angula
momentum state. However, PDC is not a perfect source
1050-2947/2001/63~4!/042310~10!/$20.00 63 0423
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pairs of photons; one must account for the higher-order c
tributions due to more than two photons. Also, the time
emission of the correlated pair is random. These feature
PDC will be shown to be accommodated in the group th
retic approach of applying an SU~1,1! transformation to the
vacuum state@19,20#.

The Bell inequality test is performed first by producin
the photon pairs via PDC and then directing the photo
through passive optical elements~beam splitters, phase
shifters, polarizer rotators!. These passive optical elemen
mix two bosonic fields at each stage and conserve pho
number; such transformations are described as SU~2! trans-
formations@19–21#. Thus the input vacuum state is subject
to an overall unitary transformation which can be deco
posed into a sequence of SU~1,1! and SU~2! transformations
to produce the final output state. This state is then subje
to photon coincidence measurements, and the constrain
local realism impose an upper bound on photon coincide
rates for various parameter choices. A violation of this up
bound corresponds to a violation of Bell’s inequality an
hence, a test of local realism.

We shall see that it is natural to characterize Bell inequ
ity experiments in terms of unitary transformations and
identify the Lie algebra which generates these transform
tions for particular Bell inequality experiments. We sho
that ideal Bell inequality experiments effect an SU~1,1!
transformation, which is distinct from the SU~1,1! transfor-
mation that produces the photon pairs. Distinct ideal B
inequality experiments can be identified with differe
SU~1,1! subgroups in Sp(8,R).
©2001 The American Physical Society10-1
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In Sec. II, we describe tests of Bell’s inequality and e
tablish the mathematical framework necessary for study
such tests. The SU~2! transformations for passive optical e
ements and the SU~1,1! transformations for PDC are dis
cussed. In Sec. III, we treat the ideal test of a Bell inequa
by analyzing the experimental arrangement of an SU~1,1!
PDC transformation followed by SU~2! passive optical ele-
ments. The result is that the ideal Bell inequality test ari
as an SU(1,1),Sp(8,R) transformation of the vacuum sta
with some freedom to choose the applicable SU~1,1! trans-
formation. An alternative realization of an ideal Bell inequa
ity test is presented in Sec. III as well as an example o
post-selected form of testing Bell’s inequality. Conclusio
are presented in Sec. IV and include a brief discussion of
nature of the general SU~1,1! coherent state involved in Be
inequality tests.

II. BACKGROUND

A. Bell inequality test

In the standard Bell inequality test, a source produce
pair of entangled spin-1/2 particles. These two partic
propagate in different directions and are detected by spat
separated detectors which can measure the spin state of
of the two particles along specified axes. An example of
entangled state is given by Eq.~1.1!. We refer to the two
spatially separated components~channels! as a and b, and
the state may be subjected to simultaneous measuremen
the spin states ofa andb along preferred axes.

The Clauser-Horne-Shimony-Holt~CHSH! inequality
version of the Bell inequality@4# introduces the figure o
merit

S5uC~ua ,ub!1C~ua ,ub8!1C~ua8 ,ub!2C~ua8 ,ub8!u,
~2.1!

with ua ,ua8 describing measurement axes for systema,
ub ,ub8 for systemb, andC(ua ,ub) the correlation betweena
and b ~with values in the range@21,11#!. Local realism
places a bound of 2 onS, giving the CHSH inequality,

S<2 ~ for local realism!, ~2.2!

and quantum mechanics predicts a violation of this inequ
ity for certain quantum states@22#. For example, using the
singlet state~1.1! with the values@23#

ua2ub5ua82ub5ua82ub85 1
3 ~ua2ub8!5p/8, ~2.3!

one obtains a violation of the CHSH inequality ofS52&.
Here we employ the CHSH inequality to investigate B

inequality tests as unitary transformations. A detailed ana
sis of Bell inequalities requires consideration of the Claus
Horne formulation of the inequality@24# and treatment of
loopholes in the various experimental tests@25#. However,
these issues are not directly relevant to this analysis, and
CHSH inequality suffices to consider an ideal bound on
system which is governed by local realism.
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B. Algebra sp„8,R… and its subalgebras

Although the Bell inequality test was devised using tw
spin-1/2 particles, we may use a boson representation to
alize an optical version of the experiment. In this case th
are four boson field modes to consider, each with a co
sponding annihilation operator:â1 corresponding to the
vertical polarization for thea spatial mode,â2 correspond-
ing to the horizontal polarization for thea spatial mode, and
annihilation operatorsb̂6 for the vertical and horizontal po
larizations for theb spatial modes. There are thus four m
tually commuting boson-operator pairsâ6 ,b̂6 and their con-
jugates, which can be presented as

â1→ ĉ1 , â2→ ĉ2 , b̂1→ ĉ3 , b̂2→ ĉ4 , ~2.4!

â1
† → ĉ1

† , â2
† → ĉ2

† , b̂1
† → ĉ3

† , b̂2
† → ĉ4

† . ~2.5!

These operators obey the usual boson commutation rule

@ ĉi ,ĉ j
†#5d i j , @ ĉi ,ĉ j #5@ ĉi

† ,ĉ j
†#50. ~2.6!

An optical test of Bell’s inequality can employ PDC, po
larization rotation~where the spin-1/2 state corresponds to
polarization state of the photon!, beam splitters, phas
shifters, and mirrors as stages of the processing of the q
tum state. Each of these stages can be represented m
ematically as a unitary transformation provided that los
are neglected. The infinitesimal generators of these trans
mations consist of quadratic combinations of the opera
~2.4! and ~2.5!, of the form ĉi ĉ j , ĉi

†ĉ j , and ĉi
†ĉ j

† . These
quadratic operators span the complexification of the alge
sp(8,R), with the standard basis (i , j P$1,2,3,4%)

Âi j 5 ĉi
†ĉ j

† , ~2.7!

Ĉi j 5
1
2 ~ ĉi

†ĉ j1 ĉ j ĉi
†!, ~2.8!

B̂i j 5 ĉi ĉ j . ~2.9!

These operators obey the~complexified! sp(8,R) commuta-
tion relations

@Âi j ,Âkl#505@B̂i j ,B̂kl#,

@Ĉi j ,Ĉkl#5d jkĈil 2d i l Ĉk j ,

@Ĉi j ,Âkl#5d jkÂil 1d j l Âik ,

@Ĉi j ,B̂kl#52d i l B̂ jk2d ikB̂j l ,

@Âi j ,B̂kl#52dkiĈj l 2dk jĈil 2d i l Ĉ jk2d j l Ĉik .
~2.10!

Note that the generators$Ĉi j % span a complex u~4! subalge-
bra. This four-boson realization of the algebra sp(8,R) pro-
vides the language with which to describe Bell inequal
experiments~and many other optical experiments as well!.
0-2
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In optical versions of Bell inequality tests, the measu
ment of the coincidence rateC(ua ,ub) used in Eq.~2.1! for
photons is to record simultaneous photodetections in sp
modesa andb. A convenient expression for the correlatio
function in terms of this four-boson realization is@26#

C~ua ,ub!5
^~ â1

† â12â2
† â2!~ b̂1

† b̂12b̂2
† b̂2!&

^~ â1
† â11â2

† â2!~ b̂1
† b̂11b̂2

† b̂2!&
.

~2.11!

Strictly speaking, this expression is applicable to the CH
inequality when the photon pair flux is sufficiently low th
the probability of more than one pair of photons arriving
the detectors is negligible. The spontaneous generatio
pairs by PDC permits a sufficiently short interval to be ch
sen, in principle, to ensure that higher-order terms~beyond
the vacuum and photon pairs! can be neglected. The vacuu
produces no coincidences and the coincidence rate is s
zero in this case. The normalization is trivial for the case
a single pair, with photons arriving ata andb detectors. The
coincidence rate represented by Eq.~2.11! is appropriate for
quantum optics experiments. We show in Sec. III A that
flux rate of photon pairs cancels via the denominator a
therefore, the flux rate does not appear in calculations
Bell’s inequality.

The algebra sp(8,R) contains many subalgebras that ha
physical significance in terms of quantum optics and B
inequality tests. In the following, we identify certain suba
gebras with optical transformations induced by beam sp
ters, phase shifters, polarization rotations, and PDC’s.

C. Realizations of su„2… subalgebras

Many passive~i.e., photon number conserving! optical
transformations can be described by various su~2! subalge-
bras in sp(8,R). For example, many useful su~2! subalgebras
can be realized as a two-boson realization for anyiÞ j , given
by

Ĵx
~ i j !5 1

2 ~ ĉi
†ĉ j1 ĉi ĉ j

†!,

Ĵy
~ i j !5

1

2i
~ ĉi

†ĉ j2 ĉi ĉ j
†!,

Ĵz
~ i j !5 1

2 ~ ĉi
†ĉi2 ĉ j

†ĉ j !, ~2.12!

and satisfying@ Ĵx
( i j ) ,Ĵy

( i j )#5 i Ĵz
( i j ) with x,y,z cyclic.

Some of the realizations of these su~2! subalgebras corre
spond to~i! mixing of two modes~interactions of the type
â1

† b̂11â1b̂1
† ! via a beam splitter,~ii ! mixing polarizations

in one mode (â1
† â21â1â2

† ), and ~iii ! mixing both spatial

modes and polarization modes (â6
† b̂7).

Consider, for example, the polarization-independent be
splitter @21#. The generator associated to this optical dev
is

ĴBS5 Ĵx
~13!1 Ĵx

~24!5 1
2 ~ â1b̂1

† 1â1
† b̂11â2b̂2

† 1â2
† b̂2!.

~2.13!
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The associated unitary transformation of a 50/
polarization-independent beam splitter is

UBS5exp@ i ~p/4!ĴBS#, ~2.14!

which is an element of the SU~2! subgroup corresponding t
polarization-independent channel mixing@27#. As another
example, the operator

ĴPS5 Ĵz
~13!1 Ĵz

~24!5 1
2 ~ â1

† â12b̂1
† b̂11â2

† â22b̂2
† b̂2!

~2.15!

describes a polarization-independent phase shifter and
generates a transformation in this same SU~2! subgroup.

As an example of mixing polarizations in one spat
mode, consider the operator

Ĵa5 Ĵx
~12!5 1

2 ~ â1
† â21â1â2

† !. ~2.16!

This operator generates the unitary transformation

Ua~ua!5exp~ iuaĴa!, ~2.17!

which rotates the polarization in channela by an angleua
and does not affect channelb; i.e., this transformation de
scribes a polarization rotator of angleua in the a channel.

The above are just some of the su~2! subalgebras used t
describe lossless, passive optical elements: elements
which the total number of input quanta equals the total nu
ber of output quanta.

D. Realizations of su„1,1… subalgebras

The transformations associated with parametric downc
version are active; they create or annihilate pairs of photo
The Lie algebra su~1,1! has been shown@19,20# to describe
these transformations.

In PDC, a crystal with ax (2) nonlinearity is pumped by a
coherent field, wherein each pump photon spontaneously
cays into a pair of photons. IndegeneratePDC, the two
photons in the pair are identical; innondegeneratePDC, the
pump photon decays into two nonidentical photons. F
(k i ,v i) the wave vector and angular frequency of thei th
field, with i 50 for the pump field andi 51,2 for the two
output fields, energy conservation yieldsv05v11v2 and
momentum conservation yieldsk05k11k2 . For degenerate
PDC,v15v2 andk15k2 @17#.

For below-threshold operation, the pump field may
considered to be a classical field. Treating the pump field
classical allows the annihilation and creation operators
the pump field photon to be treated asc numbers and not as
operators.

1. PDC and the algebra su(1,1)

By analogy with the beam splitter, which is described
an SU~2! transformation, PDC is described by an SU~1,1!
transformation. A basis for the su~1,1! algebra is given by
the set of operators$K̂x ,K̂y ,K̂z%, with commutation relations
0-3



rs

t

po

en
re

tio
o

ta

io
q

s

l-

glet

e-

s the
of

ced
led

he

m-

the

ion

he

e-
tion

rate
ra
-

a
he

t a
des
ns.

ired
pair
ing

BARTLETT, RICE, SANDERS, DABOUL, AND de GUISE PHYSICAL REVIEW A63 042310
@K̂x ,K̂y#52 iK̂ z , @K̂y ,K̂z#5 iK̂ x , @K̂z ,K̂x#5 iK̂ y .
~2.18!

For degenerate PDC, the appropriate realizations
su~1,1! are one-boson realizations given by the generato

K̂x
~ i !5 1

4 ~ ĉi
†ĉi

†1 ĉi ĉi !,

K̂y
~ i !5

1

4i
~ ĉi

†ĉi
†2 ĉi ĉi !,

K̂z
~ i !5 1

4 ~ ĉi
†ĉi1 ĉi ĉi

†!, ~2.19!

Here the annihilation operatorĉi can refer to any ofâ1 , â2 ,
b̂1 , or b̂2 .

For the nondegenerate case, where PDC generates
nonidentical photons, the appropriate realizations of su~1,1!
are two-boson realizations given by the generators

K̂x
~ i j !5 1

2 ~ ĉi
†ĉ j

†1 ĉi ĉ j !,

K̂y
~ i j !5

1

2i
~ ĉi

†ĉ j
†2 ĉi ĉ j !,

K̂z
~ i j !5 1

2 ~ ĉi
†ĉi1 ĉ j ĉ j

†!. ~2.20!

A type-I PDC is one for which, typically,ĉi5â1 and ĉ j

5b̂1 , whereas, in a type-II PDC,ĉi5â1 and ĉi5b̂2 . That
is, a pair of photons is created in the same polarization
type-I PDC and a pair of photons is created in opposite
larizations in type-II downconversion.

It is also possible to design PDC’s which generate
tangled pairs@9#. Such a setup involves a type-II PDC, whe
the emission directions of thea and b channel photons are
made to overlap, and is described by a four-boson realiza
of su~1,1! @28#. There are several such realizations, each
which describes the generation of a different entangled s
One example is given by the generators

K̂x5 1
2 ~ â1

† b̂2
† 2â2

† b̂1
† 1â1b̂22â2b̂1!,

K̂y5
1

2i
~ â1

† b̂2
† 2â2

† b̂1
† 2â1b̂21â2b̂1!,

K̂z5
1
2 ~ â1

† â11b̂2b̂2
† 1â2

† â21b̂1b̂1
† !. ~2.21!

It is interesting to note that the above four-boson realizat
is a direct sum of two of the two-boson realizations in E
~2.20!, with a sign change, as follows:

K̂x5K̂x
~14!2K̂x

~23! ,

K̂y5K̂y
~14!2K̂y

~23! ,

K̂z5K̂z
~14!1K̂z

~23! . ~2.22!

One can easily check that these generators also satisfy
commutation relations of su~1,1!. Adjusting the parameter
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of the PDC ~such as the relative phase! can lead to other
similar four-boson realizations. It will be shown in the fo
lowing that this particular realization generates an SU~1,1!
transformation which describes the generation of the sin
state.

It is possible to design a different PDC that is also d
scribed by this four-boson realization@17# and which also
generates entangled pairs. This setup, however, entangle
photons in wave number rather than polarization. Pairs
photons are selected by four pinholes in a diaphragm pla
downstream from the PDC to produce four channels, labe
1–4, with wave vectors$k1 ,k2 ,k3 ,k4%. These wave vectors
satisfy

uk1u5uk4u,

uk2u5uk3u, but uk1uÞuk2u, ~2.23!

and

k11k35k21k45k, ~2.24!

where k is the wave vector of the beam incident on t
crystal.

Let the annihilation operators for these four wave nu
bers correspond to the ordered set$â1 ,b̂1 ,b̂2 ,â2%. Thus
we are able to employ the earlier notation although
physical system is entirely different. The su~1,1! algebra de-
scribing this PDC is also given by the four-boson realizat
of Eq. ~2.21!.

2. Pair generation using PDC

The rate of pair creation using PDC is proportional to t
nonlinearityx (2), the strength of the~classical! pump field,
and the interaction time. In the following, we develop a on
parameter transformation which describes pair genera
from the vacuum state for PDC.

Consider the action of an SU~1,1! transformation, gener-
ated by the realization corresponding to either the degene
PDC algebra of Eq.~2.19! or the nondegenerate PDC algeb
of Eq. ~2.20!, on the vacuum stateu0&. This state is an eigen
state ofK̂z and is annihilated byK̂25K̂x2 iK̂ y , and thus by
using a normal-ordered form, it is sufficient to express
general SU~1,1! transformation of the vacuum state as t
one-parameter transformation

Y~g!u0&5exp~ igK̂x!u0&, gPR. ~2.25!

The resultant state is not simply a pair of photons, bu
superposition of photon number states which also inclu
the vacuum, pairs-of-pairs, and higher order contributio
For g small, the resulting state can be approximated as

Y~g!u0&'u0&1 igK̂xu0&. ~2.26!

The role of the vacuum in the superposition~2.26! is to in-
clude in the state the feature that the creation of the des
photon pair occurs at a random time. That is, the photon
cannot be created ‘‘on demand.’’ Note that photon count
0-4
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does not detect the vacuum, so the inclusion of this s
does not alter the final measurement process.

Consider, for example, the case of a type-I nondegene
PDC, described byK̂x

(13)5 1
2 (â1

† b̂1
† 1â1b̂1). The resulting

~approximate! state is

Y type-I~g!u0&'u0&1
i

2
gu1,0,1,0&, ~2.27!

where the Fock notationui,j,k,l& describes a state withi,j,k,l
photons in thea1 ,a2 ,b1 ,b2 modes, respectively.

Provided that observations are conditioned on actually
tecting photons, the vacuum state plays no role. Thus ‘‘c
ditioning’’ the state can be described by a projectionp̂, de-
fined by

p̂5u1,0,1,0&^1,0,1,0u1u1,0,0,1&^1,0,0,1u

1u0,1,1,0&^0,1,1,0u1u0,1,0,1&^0,1,0,1u, ~2.28!

which projects any state in the Fock space onto the subs
of states with exactly one photon in channela and one in
channelb. Such a projection relies on photodetectors that
discriminate between one and more than one photon@29#. As
the photon-pair flux rate is assumed to be small, contri
tions due to higher-order terms are negligible, and thus c
rent photodetectors which do not discriminate between
and more photons are adequate.

By projecting the state in Eq.~2.27!, we obtain the ‘‘con-
ditioned photon pair state’’u1,0,1,0&. We thus have the req
uisite pair of correlated particles, but not an entangled st

A relevant basis for the subspace of degenerate eig
states ofp̂ is the so-called ‘‘Bell state basis,’’ given by

uc6&5
1

&
~ u1,0,0,1&6u0,1,1,0&),

uf6&5
1

&
~ u1,0,1,0&6u0,1,0,1&). ~2.29!

The stateuc2& is the singlet stateucsinglet& of Eq. ~1.1!. The
other Bell states are equally suitable entangled states for
ing the Bell inequality. It is desirable, in tests of the Be
inequality, to be able to generate entangled states suc
these.

As an example of a realization of SU~1,1! that will gen-
erate an entangled~Bell! state, consider the four-boson rea
ization given by Eq.~2.21!. To lowest order ing, we have

Ysinglet~g!u0&5exp~ igK̂x!u0&

'u0&1
i

2
g~ u1,0,0,1&2u0,1,1,0&).

~2.30!

By applying the projectionp̂, the state reduces, ‘‘condi
tioned’’ on photons being present, to the singlet stateuc2&.
In the experimental setup of Kwiatet al. @9#, a PDC de-
scribed by this transformation has been shown to gene
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the singlet state. By adjusting the parameters of the PDC
performing local unitary transformations, any of the Be
states of Eq.~2.29! can be produced; the generators cor
spond to different four-boson realizations of su~1,1! similar
to that of Eq.~2.21!. It is also possible to use PDC to gen
erate an entangled state in wave number, using the me
described above and described by the same SU~1,1! transfor-
mation.

III. REALIZATIONS OF THE BELL INEQUALITY TEST

A. Ideal Bell inequality test

In this section we construct simple transformations on
vacuum state which correspond to an ideal Bell inequa
experiment. We establish the algebra which generates t
transformations to be su~1,1! and calculate the quantum
mechanical correlation functionsC(ua ,ub) for the corre-
sponding state.

The ideal Bell inequality experiment is depicted in Fig.
This experiment has been performed by Kwiatet al. @9#. The
first requirement is a device which produces the entang
photon pairs, thereby providing the necessary Bell state.
singlet state of Eq.~2.30! is obtained by using the projecto
p̂ on a state produced via PDC described by the four-bo
realization of Eq.~2.21!. The presence of the vacuum state
the superposition signifies that the ‘‘location,’’ or ‘‘creatio
time,’’ of the singlet is indeterminate; singlet states are n
created ‘‘on demand.’’ The SU~1,1! transformation
Ysinglet(g) is generated by the operator

K̂5 1
2 ~ â1

† b̂2
† 2â2

† b̂1
† 1â1b̂22â2b̂1!. ~3.1!

Note that the Bell inequality test can be performed with a
one of the four Bell states in Eq.~2.29!; our choice of the
singlet state is simply for convention. Thus this choice ofK̂
as the Bell state generator is not unique.

The PDC output is directed to local polarization rotato
one for thea mode and one for theb mode, each followed by
a polarizing beam splitter. The polarizing beam splitter se

FIG. 1. Diagrammatic representation of the ideal Bell inequa
experiment. The PDC which produces the singlet state is u
Channela is passed through a polarization analyzer at angleua and
channelb through one at angleub . PhotodetectorsD1 , D2 , D3 ,
andD4 measure the corresponding photocounts.
0-5
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rates the two orthogonal polarization components of the fi
and directs them to two photodetectors, which can count
photons in each of the two polarizations. We refer to
combination of the polarizer rotator, with an adjustable p
rameterua,b , and the polarizing beam splitter, which sep
rates the two polarizations into distinct spatial modes, a
polarization analyzer. This polarization analyzer is depic
as the hexagon in Fig. 1.

Bell’s inequality establishes an upper bound to the m
surable photon coincidence rate allowed by local reali
assumptions for various choices ofua and ub of the two
polarization analyzers. The polarizations are transformed
dependently by a U(1)a^ U(1)b rotation, with two indepen-
dent, local parametersua and ub , with the following two
mutually commuting generators. For polarization rotation
the a mode, the generatorĴa of Eq. ~2.16! is required; simi-
larly, for theb mode, we require

Ĵb5 Ĵx
~34!5 1

2 ~ b̂1
† b̂21b̂1b̂2

† !. ~3.2!

Equal polarization rotations for modesa and b leave the
singlet state invariant, as

@K̂,Ĵa1 Ĵb#50. ~3.3!

Thus it is only necessary@30# to consider a difference trans
formationU2(u2) generated byĴ5 Ĵa2 Ĵb , given by

U2~u2!5eiu2Ĵae2 iu2Ĵb5eiu2Ĵ. ~3.4!

Note that the operatorsĴ, K̂, and

L̂5
1

2i
~ â2

† b̂2
† 2â1

† b̂1
† 2â2b̂21â1b̂1! ~3.5!

close under commutation to form a realization of su~1,1!:

@ Ĵ,K̂#5 i L̂ , @ L̂,Ĵ#5 iK̂ , @K̂,L̂#52 i Ĵ. ~3.6!

This realization of su~1,1! is distinct from any of the realiza
tions describing PDC. This algebra generates the Lie gr
SU~1,1!, which can be applied to the ground state to gene
the state

ug,u2&5U2~u2!Ysinglet~g!u0&5eiu2ĴeigK̂u0&. ~3.7!

The transformation of the ground stateu0& consists of a PDC
transformation to generate an entangled state, followed
local polarization rotations on thea andb modes by angles
u2 and2u2 , respectively. To lowest order, the state~3.7! is
a superposition of a vacuum state and a two-photon s
Neglecting the vacuum state, the effective state is then a
state ~2.29! if u250. However, for generalu2 , the two-
photon contribution to the superposition is an entanglem
of nonorthogonal SU~2! coherent states@31#.

The correlation functionC(ua ,ub) of Eq. ~2.11! for the
stateug,ua2ub& is given by
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C~ua ,ub!5
^g,ua2ubu~ ŝz!a~ ŝz!bug,ua2ub&

^g,ua2ubu~ ŝ0!a~ ŝ0!bug,ua2ub&
, ~3.8!

where (ŝz)a5â1
† â12â2

† â2 , (ŝ0)a5â1
† â11â2

† â2 , and
likewise for (ŝz)b and (ŝ0)b .

Note that, by using the approximation forg small of Eq.
~2.30! and ‘‘conditioning’’ the state on photons being prese
~i.e., excluding the vacuum state!, the PDC generates th
singlet stateuc2& of Eq. ~2.29!. Calculating the correlation
function for this state, one obtains the familiar result

C~ua ,ub!5^c2uU2
21~ua2ub!@~ ŝz!a~ ŝz!b#

3U2~ua2ub!uc2&

52cos 2~ua2ub!. ~3.9!

The singlet state can lead to a violationS52& for the pa-
rameter choices~2.3!.

There is an interesting su~1,1! structure to the correlation
function C(ua ,ub), which we detail as follows. Beginning
with the numerator, we first obtain the result

U2
21~ua2ub!@~ ŝz!a~ ŝz!b#U2~ua2ub!

5@cos~ua2ub!~ ŝz!a2sin~ua2ub!~ ŝy!a#

3@cos~ua2ub!~ ŝz!b1sin~ua2ub!~ ŝy!b#.

~3.10!

Then consider the following change of basis:

Ĵz
15~ ŝz!a1~ ŝz!b , Ĵz

25~ ŝz!a2~ ŝz!b ,

Ĵy
15~ ŝy!a1~ ŝy!b , Ĵy

25~ ŝy!a2~ ŝy!b . ~3.11!

This basis transforms simply under the action ofYsinglet(g)
as follows:

Ysinglet
21 ~g!Ĵz

1Ysinglet~g!5 Ĵz
1 ,

Ysinglet
21 ~g!Ĵy

1Ysinglet~g!5 Ĵy
1 ,

Ysinglet
21 ~g!Ĵz

2Ysinglet~g!5cosh~g!Ĵz
21sinh~g!L̂z ,

Ysinglet
21 ~g!Ĵy

2Ysinglet~g!5cosh~g!Ĵy
21sinh~g!L̂y ,

~3.12!

where

L̂z5
1

2i
~ â1

† b̂2
† 1â2

† b̂1
† 2â1b̂21â2b̂1!,

L̂y5 1
2 ~ â2

† b̂2
† 1â1

† b̂1
† 1â2b̂21â1b̂1!. ~3.13!

Evaluating the numerator of Eq.~3.8! gives
0-6
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^g,ua2ubu~ ŝz!a~ ŝz!bug,ua2ub&

5sinh2~g!@2cos2~ua2ub!^0uL̂z
2u0&

1sin2~ua2ub!^0uL̂y
2u0&#

52 1
2 sinh2~g!cos 2~ua2ub!. ~3.14!

We have utilized the fact that the mixed terms such
sin(ua2ub)cos(ua2ub)(ŝz)a(ŝy)b , etc., in Eq.~3.10! do not
contribute and also that the vacuum expectation values
the operators of the ‘‘J type’’ ~of the form ĉi

†ĉ j ! vanish.
Next, evaluating the denominator in a similar fashion,

first observe that

U2
21~ua2ub!@~ ŝ0!a~ ŝ0!b#U2~ua2ub!5~ ŝ0!a~ ŝ0!b .

~3.15!

Again, consider the change of basis

N̂0
15~ ŝ0!a1~ ŝ0!b , N̂0

25~ ŝ0!a2~ ŝ0!b . ~3.16!

This basis transforms simply under the action ofYsinglet(g)
as follows:

Ysinglet
21 ~g!N̂0

1Ysinglet~g!5cosh~g!N̂0
11sinh~g!L̂0 ,

Ysinglet
21 ~g!N̂0

2Ysinglet~g!5N̂0
2 , ~3.17!

where

L̂052
1

2i
~ â1

† b̂2
† 2â2

† b̂1
† 2â1b̂21â2b̂1!. ~3.18!

Evaluating the denominator gives

^g,ua2ubu~ ŝ0!a~ ŝ0!bug,ua2ub&

5sinh2~g!^0uL̂0
2u0&5 1

2 sinh2~g!. ~3.19!

Thus we find that the correlationC(ua ,ub) is given by

C~ua ,ub!52cos 2~ua2ub!. ~3.20!

The result is identical to the correlation function of the s
glet state, given by Eq.~3.9!, and is independent of the flu
rate termg. The cancellation ofg occurs because of th
normalization with respect to the cross correlation of to
number of photons ata andb. Although the dependence ong
vanishes in the expression, it is assumed thatg is sufficiently
small to ensure that the probability of more than one p
arriving at the detectors is negligible over the detector in
gration time per event.

This simple formulation of the Bell inequality test revea
a basic su~1,1! structure to the experiment. In the following
this result is shown to be general for several realized exp
ments. There is considerable choice of the su(1,1),sp(8,R)
subalgebra that can be used, depending on the type of
state generated and the corresponding optical transfo
tions performed on it. It will be shown in the following how
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existing experiments use other su~1,1! subalgebras distinc
from theJKL algebra to test the Bell inequality.

B. Alternative ideal Bell inequality test

Although the ideal Bell inequality test has been presen
in terms of entangled photons with respect to polarization
alternative test was suggested by Horneet al. @32#, depicted
in Fig. 2, and realized experimentally by Rarity and Taps
@12#. This realization employs a PDC which creates e
tanglement in wave number rather than polarization, as
scribed by a four-boson realization of su~1,1! similar to that
of Eq. ~2.21!.

Using the description of photon pairs entangled in wa
number given in Sec. II D 1, the appropriate generator
producing entangled pairs is

K̂85 1
2 ~ â1

† b̂2
† 1â2

† b̂1
† 1â1b̂21â2b̂1!, ~3.21!

which produces a pair of photons with wave numbersk1 and
k3 , entangled with a pair of photons with wave numbersk2

andk4 . @The use of the prime onK̂8 is meant to distinguish
this generator from that of Eq.~3.1!.# Employing the ap-
proximation that only one photon pair is created,K̂8 gener-
ates the Bell stateuc1& of Eq. ~2.29!. Rather than subjecting
these fields to polarization rotation, phase shifts (f1 ,f2) are
applied, and the corresponding generators, following
~2.15! and the notation of Sec. II C, are

ĴPS
a 5 Ĵz

~12!5 1
2 ~ â1

† â12â2
† â2! ~3.22!

and

ĴPS
b 5 Ĵz

~34!5 1
2 ~ b̂1

† b̂12b̂2
† b̂2!. ~3.23!

Similar to the ideal case, only the phase shiftdifferencebe-
tween the two channels will actually transform the entang
state, and thus we apply the generator

Ĵ85 ĴPS
a 2 ĴPS

b 5 1
2 ~ â1

† â12â2
† â22b̂1

† b̂11b̂2
† b̂2!

~3.24!

in the form of the unitary operator

FIG. 2. Schematic of the experiment of Horneet al. for testing
the Bell inequality.
0-7
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UPS~f2!5exp~ if2Ĵ8!, f25f12f2 . ~3.25!

Note that the entangled state generatorK̂8, the phase shift
operatorĴ8, and the operator

L̂85
1

2i
~ â2

† b̂2
† 2â2

† b̂1
† 2â1b̂21â2b̂1!, ~3.26!

close to an su~1,1! algebra with commutation relations

@ Ĵ8,K̂8#5 i L̂ 8, @ L̂8,Ĵ8#5 iK̂ 8, @K̂8,L̂8#52 i Ĵ8.
~3.27!

The experimental scheme involves an interferometric
rangement for the phase shifts to be meaningful; the fie
must be mixed by a wavelength-independent 50/50 be
splitter ~BS!, as described byUBS of Eq. ~2.14!.

The apparatus performs a transformation on the vacu
state to give the entangled state

ug,u2&5UBSe
if2Ĵ8eigK̂8u0&, ~3.28!

followed by photon coincidence detection in each of the fo
output modes~detectorsDi , i 51,2,3,4!. Since the vacuum is
invariant under the transformationUBS, we can express this
transformation as

ug,g2&5UBSe
if2Ĵ8eigK̂8UBS

21u0&

5eif2~UBSĴ8UBS
21

!eig~UBSK̂8UBS
21

!u0&. ~3.29!

Thus the transformation on the vacuum can be expresse
an SU~1,1! transformation generated by the algebra~3.27!,
conjugatedby UBS. The relevant su~1,1! subalgebra for this
alternative Bell inequality test is spanned by the opera
UBSĴ8UBS

21, UBSK̂8UBS
21, andUBSL̂8UBS

21.

Note that the generatorUBSK̂8UBS
21 can be calculated to

be

UBSK̂8UBS
2152 1

2 ~ â1
† b̂1

† 2â2
† b̂2

† 1â1b̂12â2b̂2!,
~3.30!

and thus the approximate Bell state generated by this op
tor is uf2& of Eq. ~2.29!. Thus the experiment proposed b
Horneet al. is equivalent to an ideal Bell inequality test u
ing the entangled Bell stateuf2&.

C. Postselected Bell inequality test

We have seen that the ideal Bell inequality experim
can be described as an appropriate SU~1,1! transformation on
the ground state. However, not all Bell inequality expe
ments are equivalent to the ideal test given in Sec. III A,
nonetheless test the Bell inequality. A particularly salie
example is the postselected Bell inequality test of Ou a
Mandel @10#. Although the experiment was designed to te
the Clauser-Horne version of the Bell inequality@24#, a sim-
plified version of the experimental arrangement, depicted
Fig. 3, would test the CHSH inequality and suffices for th
analysis.
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An important difference between this arrangement a
those depicted in Figs. 1 and 2 is that, in this scheme, it is
likely for both photons to go to analyzera or b as having one
photon going toa and one photon tob. The projection of the
state produced in the scheme depicted in Fig. 3 is a p
selection process whereby the vacuum contribution is
moved ~no detections occur!, higher-pair contributions are
neglected~such events are rare!, and the case that two pho
tons go to the same region,a or b, is detected with photon
counting detectors that discriminate between one and
photons arriving.

In the absence of a photodetector which discriminates
tween the arrival of one and two photons, the cases wh
both photons go to one detector is registered as a sin
photon detection. This single-photon detection is not dis
guishable from a background of single-photon events t
arise due to detector inefficiencies, and, therefore, pho
pair events arriving at one detector introduce a loophole@33#.
This problem may be rectified with new detectors that
discriminate between one and two photons being dete
@29#, and these detectors are being used for Bell inequa
tests in the Ou-Mandel scheme@34#.

In the Ou-Mandel experiment, correlated photon pairs
generated by a type-I PDC, described by a transformatio
the form of Eq.~2.26!, i.e., the transformation

YOM~g!5exp~ igK̂OM!, ~3.31!

where

K̂OM5K̂x
~13!5 1

2 ~ â1
† b̂1

† 1â1b̂1!. ~3.32!

This transformation produces correlated photons, but d
not produce an entangled pair. To do so, the polarization
the a port is rotated by 90°, which is described by the tran
formationUa(ua) of Eq. ~2.17! with ua5p/2, and entangle-
ment is then produced by a polarization-independent 50
BS, described by the transformationUBS of Eq. ~2.14!. The
result of all these transformations on the vacuum state i
produce the state

FIG. 3. Schematic of the experiment of Ou and Mandel
testing the Bell inequality.
0-8
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uc~g!&5UBSUa~p/2!YOM~g!u0&

5@UBSUa~p/2!#YOM~g!@UBSUa~p/2!#21u0&

5YOM8 ~g!u0&, ~3.33!

where we defineYOM8 (g) to be the conjugated transforma
tion

YOM8 ~g!5@UBSUa~p/2!#YOM~g!@UBSUa~p/2!#21

5exp~ igK̂OM8 !, ~3.34!

with

K̂OM8 5 1
4 @~ â2

† 1b̂2
† !~ b̂1

† 2â1
† !1~ â21b̂2!~ b̂12â1!#.

~3.35!

As mentioned above, the generator for entangled pair p
duction includes the possibility that both photons may go
polarizera, with none atb, and vice versa. By expressin
K̂OM8 as the sumK̂OM8 5K̂OM

1 1K̂OM
2 , with

K̂OM
1 5 1

4 ~ â2
† b̂1

† 2â1
† b̂2

† 1â2b̂12â1b̂2!,

K̂OM
2 5 1

4 ~ b̂1
† b̂2

† 2â1
† â2

† 1b̂1b̂22â1â2!, ~3.36!

it is clear thatK̂OM
1 generates an entangled pair~specifically,

the singlet state!, whereasK̂OM
2 generates photon pairs bo

traveling either to channela or channelb. The latter events
cannot enable tests of local realism. By post-selecting,
experiment essentially disregards the component of the s
generated byK̂OM

2 and considers only the singlet compone

generated byK̂OM
1 .

We can state the idea of post-selection formally using
projectionp̂ of Eq. ~2.28!. Projecting the stateuc~g!& of Eq.
~3.33! gives

p̂„uc~g!&…→uc2&, ~3.37!

whereuc2& of Eq. ~2.29! is the singlet state.
The operatorĴa of Eq. ~2.16! describes the final polariza

tion rotation for thea mode prior to photodetection, and th
correspondingb mode operator isĴb of Eq. ~3.2!. The trans-
formations that these operators perform on the state ge
ated byYOM8 (g) of Eq. ~3.34! are not trivial. However, if
post-selection is performed~by applying the projectionp̂!,
then the resulting transformations become identical to tha
the ideal Bell inequality test.

Thus the Bell inequality test of Ou and Mandel is distin
from the ideal test presented in Sec. III A. However, if po
selection is given by the projectionp̂ of Eq. ~2.28!, then the
test becomes equivalent to the ideal test. It should be n
again that the realization of this projection relies on pho
detectors which can distinguish between different multi
photon events, such as two photons in channela and zero in
channelb.

Whereas the disadvantage of the Ou-Mandel schem
the need for post-selection, an advantage is the relati
04231
o-
o

e
te

t

e

er-

of

t
-

ed
-
e

is
ly

high flux of photon pairs from type-I PDC compared to t
production of entangled-polarization pairs via PDC@9#. For
applications of Bell state measurements to quantum tele
tation and other schemes, higher pair flux is an advantag

IV. CONCLUSIONS

In studies of Bell inequalities, it is common to assum
from the outset that one is supplied with one of the four B
states~2.29!. In quantum optical experiments, such states
generated from the vacuum state by an SU~1,1! transforma-
tion corresponding to parametric downconversion. Local m
nipulations of the output state from the PDC are described
SU~2! transformations. Using these basic facts, we estab
that Bell inequality experiments, which manipulate fo
bosonic fields, are SU(1,1),Sp(8,R) transformations and
that distinct four-boson realizations of SU~1,1! correspond to
different experiments. For the post-selected Bell inequality
projection operator is necessary to recover the SU~1,1! trans-
formation equivalent to the ideal Bell inequality test.

This analysis is useful for a number of reasons. It is use
to know that an optical realization of the ideal Bell inequal
test, which begins with a vacuum state as a source, is
scribed by a four-boson realization of SU~1,1! to enable clas-
sification and comparison between differing tests of Bell
equalities as well as to consider new tests. According to
formalism we establish, new optical tests of Bell inequalit
would arise as distinct realizations of SU(1,1),Sp(8,R).
The question of various distinct tests of local realism c
thus be related to the mathematical question of distinct r
izations of the subgroup SU~1,1! in Sp~8,R! and the transfor-
mations which relate these subgroups. This question ma
relevant to continuous-variable approaches to tests of
inequalities@35# where degenerate PDC and the one-bos
realization~2.19! are used.

The employment of a unitary description of Bell inequa
ity tests is useful as it includes higher-order photon num
contributions and incorporates the nondeterministic crea
time for pairs of photons. It also establishes a scheme
classifying existing Bell inequality tests and proposing n
tests. In addition to the importance of Bell inequalities, n
only for testing local realism, but also for their relevance
quantum cryptography@36#, the approach employed in thi
paper can be extended to studying quantum teleporta
@37#, quantum dense coding@38#, and entanglement swap
ping @39#. These concepts and experiments in quantum in
mation apply the Bell states~2.29! and their measurements t
larger systems. The application of group theoretical meth
to such systems follows from the analysis in this paper an
under investigation.

Finally, the group theoretic approach establishes that
Bell inequality apparatus, described as a unitary transfor
tion, produces an output state which can be regarded
generalized coherent state@40#; these coherent states are d
tinct from the bi-pair~four-boson! coherent states investi
gated by Bambah and Agarwal@28#, as the relevant group is
not a direct product SU(1,1)̂SU(1,1). The output coheren
state is the transformed vacuum state. However, the vac
stateu0& is not a lowest weight state for the relevant realiz
0-9
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tions of SU~1,1! to describe Bell inequality tests. The repr
sentation containing the vacuum state is certainly reduci
However, the description of the state as a generalized co
ent state does provide a useful method for thinking about
state which arrives at the photodetectors. In this way
thinking, the state may be characterized by probability d
tributions for measurements, and the correlation funct
~3.8! can be regarded as being related to a covariance
joint probability distribution for (ŝz)a and (ŝz)b for this gen-
eralized coherent state. The elegance of the calculation
Sec. III A of the Bell inequality violations suggests that the
s.

A

A

P.

v

.

. A
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is something natural about considering these generalized
herent states in such studies.
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