PHYSICAL REVIEW A, VOLUME 63, 042310
Unitary transformations for testing Bell inequalities
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It is shown that optical experimental tests of Bell inequality violations can be described (yl5tlans-
formations of the vacuum state, followed by photon coincidence detections. The set of all possible tests are
described by various SW,1) subgroups of Sp(8). In addition to establishing a common formalism for
physically distinct Bell inequality tests, the similarities and differences of post-selected tests of Bell inequality
violations are also made clear. A consequence of this analysis is that Bell inequality tests are performed on a
very general version of SW,1) coherent states, and the theoretical violation of the Bell inequality by coinci-
dence detection is calculated and discussed. This group theoretical approach to Bell states is relevant to Bell
state measurements, which are performed, for example, in quantum teleportation.
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I. INTRODUCTION pairs of photons; one must account for the higher-order con-
tributions due to more than two photons. Also, the time of
The controversy regarding the completeness of quanturemission of the correlated pair is random. These features of
mechanicg1] was presented in the framework of entangledPDC will be shown to be accommodated in the group theo-
spin-1/2 particleg2]. This context proved to be convenient retic approach of applying an $U1) transformation to the
for Bell's development of an inequality to test the postulatesjacuum stat¢19,20.
of local realism[3—6]. Recent quantum optics experiments,  The Bell inequality test is performed first by producing
designed to test Bell inequalities, involve pairs of photonsihe photon pairs via PDC and then directing the photons
that are produced from the vacuum state, generally by opticahrough passive optical elementbeam splitters, phase
parametric downconversioPDC). PDC offers significant  shifters, polarizer rotatoys These passive optical elements
advantages over the earlier atomic cascade approach to g&fix two bosonic fields at each stage and conserve photon
erating photon pairg7]; these advantages include conserva-nymber: such transformations are described a@Stdans-
tion of energy(hence correlation frequencies of the two pho-formations{19-21). Thus the input vacuum state is subjected
tong, conservation of linear momentuiihence correlated o an overall unitary transformation which can be decom-
wavelengths and direction of propagatipand conservation  posed into a sequence of 8Li) and SU2) transformations
of angular momentunihence correlated polarizationsas  to produce the final output state. This state is then subjected
well as near simultaneity of the emission of the two photonsg photon coincidence measurements, and the constraints of
in the pair[8]. In addition to PDC acting as a source of |nca] realism impose an upper bound on photon coincidence
correlated pairs of photons, there exists a scheme for whicfytes for various parameter choices. A violation of this upper

the photon pairs are in a polarization-entangled sffle  pound corresponds to a violation of Bell's inequality and,
PDC has enabled accurate tests of local realism versus quaRence, a test of local realism.

tum theory to be performe(®-18|. . . We shall see that it is natural to characterize Bell inequal-
It is common to treat the input state for optical Bell in- jty experiments in terms of unitary transformations and to
equality measurements as the singlet state identify the Lie algebra which generates these transforma-
tions for particular Bell inequality experiments. We show
|Fsingied =(| H)®| =)= | =) @[ +))/v2, (1.)  that ideal Bell inequality experiments effect an (1)

transformation, which is distinct from the $11) transfor-
corresponding to an entanglement of vertical) and hori-  mation that produces the photon pairs. Distinct ideal Bell
zontal (—) polarized photons in a net zero-angular-inequality experiments can be identified with different
momentum state. However, PDC is not a perfect source 08U(1,1) subgroups in Sp(8).
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In Sec. Il, we describe tests of Bell's inequality and es- B. Algebra sp(8,R) and its subalgebras

tablish the mathematical frame\{vork necessary for _studying Although the Bell inequality test was devised using two
such tests. The S transformations for passive optical el- gyin_1/ particles, we may use a boson representation to re-
ements and the SW,1) transformations for PDC are dis- 4jize an optical version of the experiment. In this case there
cussed. In Sec. I, we treat the ideal test of a Bell inequality, e four boson field modes to consider. each with a corre-
by analyzing the experimental arrangement of an(lS0  ,5qing annihilation operatora, corresponding to the
PDC transformatlo.n foIIowed.by 9 passive qptlcal ele_- vertical polarization for thex spatial modea_ correspond-
ments. The result is that the ideal Bell inequality test arlse1°1qg to the horizontal polarization for treespatial mode, and
as an SU(1 transformation of the vacuum state I - . . ’
SU(L,19 Sp(8K) © on o annihilation operatorg.. for the vertical and horizontal po-

with some freedom to choose the applicable(Bl) trans- o .

formation. An alternative realization oggm ideal Bell inequal- larizations for.theb spatial modes. ThereA are thus four mu-
ity test is presented in Sec. Il as well as an example of dually commuting boson-operator pads ,b.. and their con-
post-selected form of testing Bell’s inequality. Conclusionsiugates, which can be presented as

are presented in Sec. IV and include a brief discussion of the ~ . . - . - .

nature of the general SW,1) coherent state involved in Bell a;—C, a-—C, bi.—C;, b_—C (249
inequality tests.

~

al —el, a'—el, bl—e], bl—el. (@5

Il. BACKGROUND These operators obey the usual boson commutation rules

A. Bell inequality test A Aty o A At At
. . [Ci.¢l=a;, [C.gl=[E ,¢/]=0. (2.6)
In the standard Bell inequality test, a source produces a
pair of entangled spin-1/2 particles. These two particles ap optical test of Bell's inequality can employ PDC, po-
propagate in different directions and are detected by spatiallyrization rotation(where the spin-1/2 state corresponds to a
separated detectors which can measure the spin state of ea&'ﬂarization state of the phothnbeam splitters, phase
of the two particles along specified axes. An example of argpjfters, and mirrors as stages of the processing of the quan-
entangled state is given by E@L.1). We refer to the tWo  tym state. Each of these stages can be represented math-
spatially separated componerithannely asa andb, and  ematically as a unitary transformation provided that losses
the state may be subjected to simultaneous measurements gt neglected. The infinitesimal generators of these transfor-
the spin states od andb along preferred axes. _ mations consist of quadratic combinations of the operators
The - Clauser-Horne-Shimony-HoltCHSH) inequality (2 4 and (2.5, of the form&¢;, &/¢;, and&/e!. These
version of the Bell inequality4] introduces the figure of ;. adratic operators span the complexification of the algebra
merit sp(8R), with the standard basis, { €{1,2,3,4)

(2.1) Aj=te], 2.7
with 6,,6, describing measurement axes for system Cij=3(&fe;+eeh), (2.8
6y , 6y, for systemb, andC(#6,, 6,,) the correlation betweea R
and b (with values in the rang¢—1,+1]). Local realism Bij=CiC;. (2.9

places a bound of 2 0§, giving the CHSH inequality,
These operators obey tlieomplexified sp(8R) commuta-

S<2 (for local realism, (2.2  tion relations

and quantum mechanics predicts a violation of this inequal- [Aij A]=0=[B;j .Bil,
ity for certain quantum statd®2]. For example, using the A . .
singlet statg1.1) with the valueq 23] [Cij ,Crl= 0 Cit — i Cy;j

0.— Op=0.— 0,=0.— 0,=1(0,— 0))=m/8, (2.3 [Cij Aul= i+ 8, A,
one obtains a violation of the CHSH inequality & 2v2. [Cij .Bul=—6iBjk—6iBji

Here we employ the CHSH inequality to investigate Bell o . A A .

inequality tests as unitary transformations. A detailed analy- [Aij ,Bil=—kiCji — 6¢;Cii — 8i Cj— 6, Ci -
sis of Bell inequalities requires consideration of the Clauser- (2.10

Horne formulation of the inequality24] and treatment of .

loopholes in the various experimental tef25]. However, Note that the generatof€;;} span a complex (@) subalge-
these issues are not directly relevant to this analysis, and th&a. This four-boson realization of the algebra sg{8pro-
CHSH inequality suffices to consider an ideal bound on avides the language with which to describe Bell inequality
system which is governed by local realism. experimentgand many other optical experiments as well
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In optical versions of Bell inequality tests, the measure-The associated unitary transformation of a 50/50
ment of the coincidence rate(d,,6,) used in Eq(2.1) for  polarization-independent beam splitter is
photons is to record simultaneous photodetections in spatial
modesa andb. A convenient expression for the correlation Ugs=exdi(7/4)Jgs], (2.14
function in terms of this four-boson realization[i26]

finain which is an element of the SB) subgroup corresponding to
(bib,—b’b_)) polarization-independent channel mixing7]. As another
(616++6’167)>' example, the operator

(2.11
Jps=d¥+32Y=1(ata,—blb,+ata_—b'b.)
Strictly speaking, this expression is applicable to the CHSH (2.19
inequality when the photon pair flux is sufficiently low that
the probability of more than one pair of photons arriving atdescribes a polarization-independent phase shifter and also
the detectors is negligible. The spontaneous generation @fenerates a transformation in this same(B$ubgroup.
pairs by PDC permits a sufficiently short interval to be cho-  As an example of mixing polarizations in one spatial

sen, in principle, to ensure that higher-order terfimsyond  mode, consider the operator
the vacuum and photon pairsan be neglected. The vacuum

produces no coincidences and the coincidence rate is set to j,=J12=1@a'a +a.al). 2.16
zero in this case. The normalization is trivial for the case of a T2 i
a single pair, with photons arriving atandb detectors. The
coincidence rate represented by E2,11) is appropriate for
guantum optics experiments. We show in Sec. Il A that the
flux rate of photon pairs cancels via the denominator and,
therefore, the flux rate does not appear in calculations of o
Bell’'s inequality. which rotates the polarlzatlon. in chgnmalby an an.gleaa

The algebra sp(8) contains many subalgebras that havea“q does not gffept channb] i.e., th|s'transformat|on de-
physical significance in terms of quantum optics and BellSCTibes a polarization rotator of angl in the a channel.
inequality tests. In the following, we identify certain subal- 1€ above are just some of the(Busubalgebras used to
gebras with optical transformations induced by beam Sp“t_descrlbe lossless, passive optical elements: elements for

ters, phase shifters, polarization rotations, and PDC's. which the total number of input quanta equals the total num-
ber of output quanta.

(@la, -

((aia,+

a'a_)
C(ﬁayeb): ala )

This operator generates the unitary transformation

Ua(6a) =expli 623,), (2.17

C. Realizations of s§2) subalgebras

L . D. Realizations of si1,1) subalgebra:
Many passive(i.e., photon number conservingptical et u1.1) subalg S

transformations can be described by variou€pssubalge- The transformations associated with parametric downcon-
bras in sp(8}). For example, many useful &) subalgebras Version are active; they create or annihilate pairs of photons.

can be realized as a two-boson realization foria#y, given ~ The Lie algebra sd,1) has been showfi9,2( to describe
by these transformations.

In PDC, a crystal with (?) nonlinearity is pumped by a
o +6~61-T), coherent field, wherein each pump photon spontaneously de-
cays into a pair of photons. ldegeneratePDC, the two
e photons in the pair are identical; mondegenerat®DC, the
J;'J)Zﬁ(ﬁr@j—@iﬁf)- pump photon decays into two nonidentical photons. For
(ki ,w;) the wave vector and angular frequency of itle
field, with i=0 for the pump field and=1,2 for the two

Ji) =1 ata _ata
Iz =2 (GG—giEy, (212 output fields, energy conservation yieldg=w;+ w, and
o apy g apiy ) momentum conservation yieldg=Kk;+k,. For degenerate
and satisfyind 3V, 3011=i30) with xy,z cyclic. PDC, ;= w, andk, =k, [17].
Some of the realizations of these(8usubalgebras corre- For below-threshold operation, the pump field may be

spond to(i) mixing of two modes(interactions of the type considered to be a classical field. Treating the pump field as
é1b++é+b1) via a beam splitter(ii) mixing polarizations classical allows the annihilation and creation operators for
in one mode &'a_+4a,a"), and(iii) mixing both spatial the pump field photon to be treated @aumbers and not as

modes and polarization mode&’(b-). operators.
Consider, for example, the polarization-independent beam

splitter [21]. The generator associated to this optical device 1. PDC and the algebra su(1,1)

is By analogy with the beam splitter, which is described by

an SU?2) transformation, PDC is described by an (&)

transformation. A basis for the €4l) algebra is given by

Jps=dP+3*=1(a, bt +atb, +a_b"+a"b_) asis for
(213  the set of operatorK, K, ,K,}, with commutation relations
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[R K ]=—iR [R K ]:”g [R K ]=iK _ of the PDC(such as the relative phgsean lead to other
ey 2 e © 2 (51 similar four-boson realizations. It will be shown in the fol-
lowing that this particular realization generates an(5U)
For degenerate PDC, the appropriate realizations ofransformation which describes the generation of the singlet
su1,1) are one-boson realizations given by the generators state.
» It is possible to design a different PDC that is also de-
KO=1(elel+e¢)), scribed by this four-boson realizatidd7] and which also
generates entangled pairs. This setup, however, entangles the

R = 1 i aa photons in wave number rather than polarization. Pairs of
y =z (G —&it), photons are selected by four pinholes in a diaphragm placed
downstream from the PDC to produce four channels, labeled
KD=1 (ele;+eeh, (2.19  1-4, with wave vectorgk, ,k;,k3,ks}. These wave vectors
satisfy
Here the annihilation operatéy can referto any oé, , a_,
N N |kql=1Kal,
b,,orb_.
For the nondegenerate case, where PDC generates two -~
nonidentical photons, the appropriate realizations 61 4\ [kl =1ksl, but [ka|#[kl, (223
are two-boson realizations given by the generators and
)1 atat A n
KiV=3 (&lef+ee)), Ky +Ks =Ko+ ks=K, (2.24
S L tat A where k is the wave vector of the beam incident on the
K== (E/C —¢CT),
y o 2i7l ! crystal.
Let the annihilation operators for these four wave num-
K{=3 (&fe;+ee)). (2.20  bers correspond to the ordered $at, ,.b, ,b_,a_}. Thus

we are able to employ the earlier notation although the
A type-I PDC is one for which, typicallygi=a, and¢;  physical system is entirely different. The(sul) algebra de-
:6+ , Whereas, in a type-ll PD@;=4a, and(‘:izﬁf . That scribing this PDC is also given by the four-boson realization
is, a pair of photons is created in the same polarization irof Eq. (2.21).
type-1 PDC and a pair of photons is created in opposite po-
larizations in type-Il downconversion. 2. Pair generation using PDC

It is also possible to design PDC’s which generate en- The rate of pair creation using PDC is proportional to the
tangled pair$9]. Such a setup involves a type-1l PDC, where nopjinearity y(2), the strength of théclassical pump field,
the emission directions of the and b channel photons are 4nq the interaction time. In the following, we develop a one-

made to overlap, and is described by a four-boson realizatiogarameter transformation which describes pair generation
of su1,1) [28]. There are several such realizations, each o¥om the vacuum state for PDC.

which describes the generation of a different entangled state. consider the action of an SU,1) transformation, gener-

One example is given by the generators ated by the realization corresponding to either the degenerate
T PDC algebra of Eg2.19 or the nondegenerate PDC algebra
Ky=z(aib_.—a-b,+a,b_—a_b,), of Eg. (2.20, on the vacuum stat@). This state is an eigen-

1 state ofK, and is annihilated bX _ =K, —iK,, and thus by
Ry:?(g\iﬁj_3151_3+5_+a_5+)’ using a normal-ordered form, it is sufficient to express a
i

general SW1,1) transformation of the vacuum state as the
one-parameter transformation

K,=%(ata,+b_bf+ala_+b,bt). (2.21

Y (y)|0)=expiyK,)|[0), vyeR. 2.2
It is interesting to note that the above four-boson realization I0) Ri7KJI0), (229
is a direct sum of two of the two-boson realizations in Ethe resultant state is not S|mp|y a pair of photonsy but a

(2.20, with a sign change, as follows: superposition of photon number states which also includes
s s 523 the vacuum, pairs-of-pairs, and higher order contributions.
K=K " =K, For y small, the resulting state can be approximated as
Ky=K{M—K, Y (7)]|0)~|0)+iyK,|0). (2.26
K,= |”<<Zl4>+ R<z23>_ (2.22  The role of the vacuum in the superpositih26 is to in-

clude in the state the feature that the creation of the desired
One can easily check that these generators also satisfy tipdoton pair occurs at a random time. That is, the photon pair
commutation relations of $Wi,1). Adjusting the parameters cannot be created “on demand.” Note that photon counting
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does not detect the vacuum, so the inclusion of this state
does not alter the final measurement process.

*/'@
Consider, for example, the case of a type-l nondegenerat

PDC, described bk (:¥=1(a’ bt +4a,b,). The resulting . ~~
(approximate state is
[
Yiype-(7)]0)=]0) + 5 %11,0,1,0, (227 ——| PPC

where the Fock notatiofi,j,k|) describes a state withj k|l b " @
photons in thea, ,a_,b, ,b_ modes, respectively. —

Provided that observations are conditioned on actually de- \
tecting photons, the vacuum state plays no role. Thus “con- - @
ditioning” the state can be described by a projectionde-
fined by FIG. 1. Diagrammatic representation of the ideal Bell inequality

experiment. The PDC which produces the singlet state is used.
= | 1’0-19(1'0:1’@"' | 1’0'0:3<1'0:0’1 Channela is passed through a polarization analyzer at adgland

channelb through one at anglé,. Photodetector®,, D,, Dj,

+ |0’1’1’Q<0’1’1’Q+ |0’l’0’1)<0’1’0’1’ (2.28 andD, measure the corresponding photocounts.

which projects any state in the Fock space onto the subspace . A
of states with exactly one photon in chanmelnd one in the smg}et state. By gdjustlng the pargmeters of the PDC and
channeb. Such a projection relies on photodetectors that caif€forming local unitary transformations, any of the Bell

discriminate between one and more than one phi26h As states of E'q(2.29) can be produced; _the generatqrs' corre-
the photon-pair flux rate is assumed to be small, contripuSPOnd to different four-boson realizations of(Bi) similar

tions due to higher-order terms are negligible, and thus cur© that of Eq.(2.21). It is a_lso possible to use I.DDC to gen-
grate an entangled state in wave number, using the method
described above and described by the samél d)transfor-

and more photons are adequate. )
mation.

By projecting the state in E¢2.27), we obtain the “con-
ditioned photon pair state{1,0,1,0. We thus have the reg-
uisite pair of correlated particles, but not an entangled state.lll. REALIZATIONS OF THE BELL INEQUALITY TEST

A relevant basis for the subspace of degenerate eigen-

. . . A. Ideal Bell inequality test
states of7r is the so-called “Bell state basis,” given by quatty

In this section we construct simple transformations on the
vacuum state which correspond to an ideal Bell inequality
0,1,1,0), experiment. We establish the algebra which generates these
transformations to be $§i,1) and calculate the quantum-
mechanical correlation function€(6,,6,) for the corre-
sponding state.
The ideal Bell inequality experiment is depicted in Fig. 1.
This experiment has been performed by Kwaagal.[9]. The
The state¢_) is the singlet statgyingey Of Eq. (1.1). The  first requirement is a device which produces the entangled
other Bell states are equally suitable entangled states for tegthoton pairs, thereby providing the necessary Bell state. The
ing the Bell inequality. It is desirable, in tests of the Bell singlet state of Eq(2.30 is obtained by using the projector
inequality, to be able to generate entangled states such ason a state produced via PDC described by the four-boson
these. realization of Eq(2.21). The presence of the vacuum state in
As an example of a realization of $11) that will gen-  the superposition signifies that the “location,” or “creation
erate an entangle@ell) state, consider the four-boson real- time,” of the singlet is indeterminate; singlet states are not
ization given by Eq(2.21). To lowest order iny, we have created “on demand.” The SW,1) transformation
Ysingie{ ¥) is generated by the operator

1
|¢2)= (11,009

1
)= E(|1,0,1,Q—|O,1,0,3))- (2.29

Y singlef ¥)|0) = expli yK ) |0)

K=21@a'b'-a'bl+a,b_—-a_b.). (3.2

N[

i
~[0)+37(1.0,03-0.1,10). Note that the Bell inequality test can be performed with any

one of the four Bell states in E¢2.29; our choice of the
singlet state is simply for convention. Thus this choice<of
By applying the projections, the state reduces, “condi- as the Bell state generator is not unique.

tioned” on photons being present, to the singlet state). The PDC output is directed to local polarization rotators,
In the experimental setup of Kwiadt al. [9], a PDC de- one for thea mode and one for thie mode, each followed by
scribed by this transformation has been shown to generat polarizing beam splitter. The polarizing beam splitter sepa-

(2.30
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rates the two orthogonal polarization components of the field (7,02— 0p](5) a(52)p| V> 02— 6p)
and directs them to two photodetectors, which can count the C(0a,6,)= 5,00 00 (50)a( 500l 7 0o )’ (3.8
photons in each of the two polarizations. We refer to the ' TpIRT0jal B0kl Fa b
combination of the polarizer rotator, with an adjustable P31 here @_Z)a:éia+_été71 (ao)a:aja++été,, and

rameterd, ,, and the polarizing beam splitter, which sepa-
rates the two polarizations into distinct spatial modes, as

polarization analyzer. This polarization analyzer is depicte 30 and “conditioning” the state on photons being present

as the hexagon in Fig. 1. ; .
o : . i.e., excluding the vacuum statehe PDC generates the
Bell's inequality _es’_[abllshes an upper bound to the meagsinglet statd z,bg,) of Eq. (2.29. glalculating tr?e correlation
surable photon coincidence rate allowed by local reallsucfunction for this state. one obtains the familiar result

assumptions for various choices 6f and 6, of the two
polarization analyzers. The polarizations are transformed in-

Jiikewise for (6,), and (G¢)p, -
d( Note that, by using the approximation fgrsmall of Eq.
2.

_ -1 . ~ ~
dependently by a U(4)» U(1), rotation, with two indepen- C(0a,0) =(- U (02— 0p)[(52)a(52)p]
dent, local parameterg, and 6,,, with the following two XU_(0,— 6p)| )
mutually commuting generators. For polarization rotation of é
the a mode, the generatal, of Eq. (2.16 is required; simi- =—Cc0s2A 0, b). 3.9

larly, for theb mode, we require
The singlet state can lead to a violatiSs 2v2 for the pa-
3p=3Y=1bTh_+b.b"). (3.2  rameter choice¢2.3. _
There is an interesting §141) structure to the correlation
function C(4,,6,), which we detail as follows. Beginning

Equal polarization rotations for modes and b leave the i ) )
with the numerator, we first obtain the result

singlet state invariant, as

[R1ja+jb]zo_ (3_3) U:l(ea_ ‘9b)[(a'z)a(a'z)b]u—(0a_ 0b)

Thus it is only necessafB0] to consider a difference trans- ~Leosfa= 0)(0z)a=SiN0a = 0)(0y)a]
formationU _(6_) generated byi=J,—J,, given by X[COL Oy— 0)(5)p+ SIN(Oa— 0p) (5]
. . . (3.10
U_(0_)=¢'"-Jae 10-Do=¢0-J, (3.4
Then consider the following change of basis:

Note that the operatord, K, and o i . i
J; =(0)at(0)p, I, =(02)a= (02,

f_ T atpt _atpt s A
P Ak ATk @y 3 =(oat (0n, Iy =(5)a— (3. (310

close under commutation to form a realization oflsl): This basis transforms simply under the actionYaf,ge( 7)
o A o A o A as follows:
[J,K]=iL, [L,J]=iK, [K,L]=-iJ. (3.6
Y gingiel )33 Yeingiel ¥) =33
This realization of s(L,1) is distinct from any of the realiza- single 2 snE ‘
tions describing PDC. This algebra generates the Lie group y-1 3ty _5*
SU(1,1), which can be applied to the ground state to generate singlel Y)dy Ysingiel ¥)=Jy
the state . . A
L Y sigiel )37 Y singiel ¥) = €08l 7)J; +sinh(y)L,,
|7107>:U—(af)Ysingle£7)|o>:elefJelyK|0>- (3.7
Y 5k el 137 Y singiel ¥) =c0sH y)J; +sinh y)L,,
The transformation of the ground sta@ consists of a PDC singief Y)Jy Y snge Y Y (3.12
transformation to generate an entangled state, followed by
local polarization rotations on the andb modes by angles \yhere
0_ and— 6_, respectively. To lowest order, the st&8e7) is

a superposition of a vacuum state and a two-photon state. 1 R R .

Neglecting the vacuum state, the effective state is then a Bell Lzzz(ai b'+a'bt —-a,b_+a_b,),

state(2.29 if #_=0. However, for generab_, the two-

photon contribution to the superposition is an entanglement R R R R R

of nonorthogonal S(2) coherent statek31]. L,=%@'b"+albl+a b_+a,b,). (313
The correlation functiorC(#6,,6,) of Eq. (2.11) for the

state|y, 0,— 6) is given by Evaluating the numerator of E3.8) gives
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(¥ 0a= 0ul (G5 a(G )bl v, 02— 6b)
=sinf?(y)[ - cos(6,— 6,)(0|L[0)
+in(6,— 0,)(0|L7|0)]
-1 S|nI"F(y)coszwa— 6p). 3.1 —

We have utilized the fact that the mixed terms such as
Sin(6a— 6,)c0SEa— 6p)(0)a(Gy)y, €tc., in Eq.(3.10 do not
contribute and also that the vacuum expectation values fol
the operators of the J type” (of the form€ c j) vanish.

Next, evaluating the denominator in a 5|m|Iar fashion, we
first observe that

FIG. 2. Schematic of the experiment of Horeeal. for testing

UZX (02— 0p)[(50)a(F0)]U— (02— )= (F0)a(G0)y. N Bellinequalty.
3.1 - . -
.19 existing experiments use other(%il) subalgebras distinct
Again, consider the change of basis from the JKL algebra to test the Bell inequality.
Ng =(50)at (50)p, Ng=(F0)a—(F0)p. (3.16 B. Alternative ideal Bell inequality test

Although the ideal Bell inequality test has been presented
in terms of entangled photons with respect to polarization, an
alternative test was suggested by Hoatal. [32], depicted
in Fig. 2, and realized experimentally by Rarity and Tapster

Y gingiel VNG Ysingie{ ¥) =coshiy)Ng +sinh(7)Lo, [12]. This realization employs a PDC which creates en-
R R tanglement in wave number rather than polarization, as de-
Y_;nlgle( ¥)No Ysingiel ¥) =Ng , (3.17 scribed by a four-boson realization of($i0) similar to that
of Eq. (2.21.
where Using the description of photon pairs entangled in wave
number given in Sec. 11D 1, the appropriate generator for
1 A D producing entangled pairs is

This basis transforms simply under the actionYaf,ge{ v)
as follows:

K'=i@'b'+a'bl +a,b_+a b,), (3.20
Evaluating the denominator gives
which produces a pair of photons with wave numberand
(¥,0a= 0bl(50)a(F0)b| v, 02— 0) ks, entangled with a pair of photons with wave numbless

andk,. [The use of the prime oK’ is meant to distinguish
this generator from that of Eq3.1).] Employing the ap-

proximation that only one photon pair is creat&d, gener-

ates the Bell statpy, ) of Eq.(2.29. Rather than subjecting
C(0,,0p)=—C0S2A 0y~ ). (3.20 these fields to polarization rotation, phase shitts () are

applied, and the corresponding generators, following Eg.

The result is identical to the correlation function of the sin-(2.19 and the notation of Sec. IIC, are

glet state, given by Eq3.9), and is independent of the flux

rate termy. The cancellation ofy occurs because of the B=31"2=1ala,—ata.) (3.22

normalization with respect to the cross correlation of total

number of photons a andb. Although the dependence gn  and

vanishes in the expression, it is assumed thiatsufficiently

=sint(y)(0|L3]0)=1% sink(y). (3.19

Thus we find that the correlatioB( 6, ,6,) is given by

small to ensure that the probability of more than one pair R=IF=1(bTb,—bTb). (3.23
arriving at the detectors is negligible over the detector inte-
gration time per event. Similar to the ideal case, only the phase sHifferencebe-

This simple formulation of the Bell inequality test reveals tween the two channels will actually transform the entangled
a basic s(,1) structure to the experiment. In the following, state, and thus we apply the generator
this result is shown to be general for several realized experi-
ments. There is considerable choice of the su@sp(8R) J=3R¥-RN=%a"a,—a"a_-blb,+b'b_)
subalgebra that can be used, depending on the type of Bell (3.29
state generated and the corresponding optical transforma-
tions performed on it. It will be shown in the following how in the form of the unitary operator
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Updp_)=expli¢p_d'), é_=¢1—d,. (329

Note that the entangled state generddr the phase shift
operator)’, and the operator

L1 . . . .
L'=—(a'b’ -a'bl-a,b_+a_b,), (3.2

—] PDC

close to an s(d,1) algebra with commutation relations
[J/,K']=iL’, [L',3']=iK’, [K',L']=-iJ".
(3.27

The experimental scheme involves an interferometric ar-
rangement for the phase shifts to be meaningful; the fields
must be mixed by a wavelength-independent 50/50 beam
splitter (BS), as described bygs of Eq. (2.14).

The apparatus performs a transformation on the vacuu
state to give the entangled state

FIG. 3. Schematic of the experiment of Ou and Mandel for
r‘tnesting the Bell inequality.

An important difference between this arrangement and
_ i ' aiyK' those depicted in Figs. 1 and 2 is that, in this scheme, it is as

|7,0-)=Vese 710, (3.29 likely for both photons to go to analyzaror b as having one

followed by photon coincidence detection in each of the fourPhoton going taa and one photon tb. The projection of the
output modegdetectorD, , i = 1,2,3,4. Since the vacuum is State produced in the scheme depicted in Fig. 3 is a post-

invariant under the transformatidihzs, we can express this Selection process whereby the vacuum contribution is re-
transformation as moved (no detections occlyr higher-pair contributions are

o neglectedsuch events are rgreand the case that two pho-

ly,7_)=Ugge'*7 e ' Uzd|0) tons go to the same regiom,or b, is detected with photon
R R counting detectors that discriminate between one and two

—gi4-(Uss)'Ugg)gi "(Ussk 'Ugs)| 0y, (3.29  photons arriving.

In the absence of a photodetector which discriminates be-
Thus the transformation on the vacuum can be expressed &seen the arrival of one and two photons, the cases where
an SU1,)) transformation generated by the algelf8a27), both photons go to one detector is registered as a single-
conjugatedby Ugg. The relevant si1,1) subalgebra for this photon detection. This single-photon detection is not distin-
alternative Bell inequality test is spanned by the operatorguishable from a background of single-photon events that

Ugsl'Ugd, UgeK'Upgd, andUpggl ' Ugd. arise due to detector inefficiencies, and, therefore, photon-
Note that the generatddgsk’Uzd can be calculated to P&l events arriving at one ‘?'e.tecw.r introduce a loopf@®:
be 9 BS BS This problem may be rectified with new detectors that do

discriminate between one and two photons being detected

So—1_  1oatitt sttt oa B & R [29], and these detectors are being used for Bell inequality
UesK'Ugs=—2(8;b5—azb-+a.b, a_b_)(,s 39 tests in the Ou-Mandel scherfig4].
' In the Ou-Mandel experiment, correlated photon pairs are
and thus the approximate Bell state generated by this opergenerated by a type-1 PDC, described by a transformation of
tor is |¢_) of Eq. (2.29. Thus the experiment proposed by the form of Eq.(2.26), i.e., the transformation
Horneet al. is equivalent to an ideal Bell inequality test us- N
ing the entangled Bell stafe)_). Yom(y)=expli yKom), (3.3

C. Postselected Bell inequality test where

We have seen that the ideal Bell inequality experiment . ~ (13
can be described as an appropriateg §U) transformation on Kom=Kyx™=
the ground state. However, not all Bell inequality experi-
ments are equivalent to the ideal test given in Sec. Il A, yefThis transformation produces correlated photons, but does
nonetheless test the Bell inequality. A particularly salientnot produce an entangled pair. To do so, the polarization of
example is the postselected Bell inequality test of Ou andhea port is rotated by 90°, which is described by the trans-
Mandel[10]. Although the experiment was designed to testformationU,(4,) of Eq. (2.17) with 8,=7/2, and entangle-
the Clauser-Horne version of the Bell inequaliB4], a sim- ment is then produced by a polarization-independent 50/50
plified version of the experimental arrangement, depicted irBS, described by the transformatittyg of Eq. (2.14). The
Fig. 3, would test the CHSH inequality and suffices for thisresult of all these transformations on the vacuum state is to
analysis. produce the state

N[=

a'bl +a.b,). (3.32
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|4(y))=UggUa(m/2)Y om(y)|0) high flux of photon pairs from type-1 PDC compared to the
. production of entangled-polarization pairs via P&}. For
=[UgsUa(m/2)]Y om( ¥)[UgsUa(7/2)] 1 0) applications of Bell state measurements to quantum telepor-
' tation and other schemes, higher pair flux is an advantage.
=Y ou(7)10), (3.33 gher p g
where we definéY o, (y) to be the conjugated transforma- IV. CONCLUSIONS
tion
In studies of Bell inequalities, it is common to assume
Y om(¥) =[UgsUa(7/2)TY om(¥)[UgsU 4 ml2)]"t from the outset that one is supplied with one of the four Bell
A stateq2.29. In quantum optical experiments, such states are
=expli yKow), (38.34  generated from the vacuum state by an(Bll) transforma-
h tion corresponding to parametric downconversion. Local ma-
wi

nipulations of the output state from the PDC are described by
., Lroat Lot Rt A A SU(2) transformations. Using these basic facts, we establish
Kow=3l(a-+b-)(by—a})+ (@ +b_)(b,—a,)]. that Bell inequality experiments, which manipulate four
(3.39 bosonic fields, are SU(1,0Sp(8R) transformations and
that distinct four-boson realizations of §1)1) correspond to

As mentioned above, the generator for entangled pair pro,

duction includes the possibility that both photons may go todifferent experiments. For the post-selected Bell inequality, a

polarizera, with none atb, and vice versa. By expressing project_ion operator Is necessary to recover thfé]SL)l trans-
- ' - PO i formation equivalent to the ideal Bell inequality test.
Kom as the sunKgy,=Kgy+ Kgy, with

This analysis is useful for a number of reasons. It is useful
A to know that an optical realization of the ideal Bell inequality
+b-), test, which begins with a vacuum state as a source, is de-
P U scribed by a four—bosc_)n realization of.SILJl_) to enable clas—_
ov=z(bibl—-alal+b,b_—&,a ), (3.39 sification and comparison between differing tests of Bell in-
R equalities as well as to consider new tests. According to the
it is clear thatk$,, generates an entangled p@pecifically, ~ formalism we establish, new optical tests of Bell inequalities
the singlet state whereask2,, generates photon pairs both Would arise as distinct realizations of SU(IC13p(81).
traveling either to channel or channeb. The latter events The question of various distinct tests of local realism can
cannot enable tests of local realism. By post-selecting, théus be related to the mathematical question of distinct real-
experiment essentially disregards the component of the statgations of the subgroup SU,1) in Sp(8,R) and the transfor-

generated bk2,, and considers only the singlet Componentmations which rglate these_ subgroups. This question may be
A‘f“" relevant to continuous-variable approaches to tests of Bell
generated b gy

] . ] inequalities[35] where degenerate PDC and the one-boson
We can state the idea of post-selection formally using thgegization(2.19 are used.

=
‘—0-

Rt _atpt 1a R
b,—-a.b’.+a b, -

FSTS
a»
a»

(

1
oM

-~

projectionr of Eq. (2.28. Projecting the statgi(y)) of Eq. The employment of a unitary description of Bell inequal-

(3.33 gives ity tests is useful as it includes higher-order photon number
- contributions and incorporates the nondeterministic creation
T P(N—=19-), (3.39 time for pairs of photons. It also establishes a scheme for

classifying existing Bell inequality tests and proposing new
R i . _ tests. In addition to the importance of Bell inequalities, not
The operatod, of Eq. (2.16 describes the final polariza- oy for testing local realism, but also for their relevance to

tion rotation for thea mode priorAto photodetection, and the quantum cryptograph}36], the approach employed in this
corresponding mode operator ig, of Eq. (3.2). The trans-  paper can be extended to studying quantum teleportation
formations that these operators perform on the state genef37], quantum dense codin@8], and entanglement swap-
ated byYoy(y) of Eq. (3.34 are not trivial. However, if ping[39]. These concepts and experiments in quantum infor-
post-selection is performety applying the projectionr), mation apply the Bell statg®.29 and their measurements to
then the resulting transformations become identical to that ofarger systems. The application of group theoretical methods
the ideal Bell inequality test. to such systems follows from the analysis in this paper and is
Thus the Bell inequality test of Ou and Mandel is distinct under investigation.
from the ideal test presented in Sec. Il A. However, if post-  Finally, the group theoretic approach establishes that the
selection is given by the projectich of Eq. (2.28), then the  Bell inequality apparatus, described as a unitary transforma-
test becomes equivalent to the ideal test. It should be notetibn, produces an output state which can be regarded as a
again that the realization of this projection relies on photo-generalized coherent stdi#0]; these coherent states are dis-
detectors which can distinguish between different multipletinct from the bi-pair(four-boson coherent states investi-
photon events, such as two photons in charnahd zero in  gated by Bambah and Agarw@8], as the relevant group is
channelb. not a direct product SU(1,8SU(1,1). The output coherent
Whereas the disadvantage of the Ou-Mandel scheme state is the transformed vacuum state. However, the vacuum
the need for post-selection, an advantage is the relativelgtate|0) is not a lowest weight state for the relevant realiza-

where|#_) of Eq. (2.29 is the singlet state.
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tions of SU1,1) to describe Bell inequality tests. The repre- is something natural about considering these generalized co-
sentation containing the vacuum state is certainly reducibleherent states in such studies.

However, the description of the state as a generalized coher-

ent state does provide a useful method for thinking about the ACKNOWLEDGMENTS
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