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Abstract
We survey some applications of SU(2) covariant maps to the phase space 
quantum mechanics of systems with fixed or variable spin. A generalization 
to SU(3) symmetry is also briefly discussed in framework of the axiomatic 
Stratonovich–Weyl formulation.
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1. Introduction

Originally introduced by Wigner [1], phase space methods have blossomed and seeded mul-
tiple applications in quantum optics, quantum chemistry, classical optics, signal analysis, 
speech analysis and other areas [2–11].

In quantum physics, phase space methods have been used for state identification and char-
acterization by plotting symbols of the density matrix as a distribution function on the sphere 
or in the q  −  p plane [12] to study the non-classicality of states [13, 14], phase properties of 
finite quantum systems [105, 106], and for state reconstruction using quantum tomography 
[15], among others.

Moyal [16] expanded the work of Wigner on the harmonic oscillator by showing how 
Wigner’s approach could be reformulated so that every quantum mechanical operator f̂  is in 
correspondence with a symbol (called the Weyl symbol) Wf ( )Ω  on a phase space. This symbol 
is a c-number function obtained by using an invertible kernel ŵ( )Ω , with Ω phase space coor-
dinates. Through this so-called Moyal correspondence, average values of operators are com-
puted as in classical statistical mechanics: by integration over phase space of the Weyl symbol 
of an operator using the symbol of the density matrix (called quasi-distribution function) as a 
formal probability distribution.
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In this review we deal mostly with maps for spin-like systems, for which the dynamical 
group is SU(2) and phase space is the 2-sphere [17–22], and their recent generalizations to 
higher unitary groups [23]. These maps, together with the Heisenberg–Weyl maps, remain the 
most popular because they allow the visualization of states as distributions in 2- dimensional 
manifolds (the sphere and the plane, respectively). The maps have relatively simple  analytical 
properties, which are complemented by considerable familiarity with the phase space 
 constructions. Additionally, SU(2) and the Heisenberg–Weyl (HW) group describe an exten-
sive palette of physical situations. The reader interested more exclusively in physical systems 
having the HW group as a dynamical symmetry, and the flat q  −  p space as phase space, is 
referred to [24–40] for a sample of articles that discuss and explore some applications of phase 
space methods to these widely-used types of systems.

It is Stratonovich in [17] who introduced an axiomatic approach extending beyond the 
harmonic oscillator and generalizable to quantum systems admitting a dynamical symmetry 
group which allows the construction of a phase space as an appropriate homogeneous mani-
fold. Indeed, when the observables of a theory are elements (or powers of elements) of a Lie 
algebra acting irreducibly on the quantum Hilbert space of states, the phase space is a mani-
fold constructed as a quotient space—as described in section 2.1—and is closely related to the 
set of orbit-type coherent states [41–43] for the corresponding group.

The Stratonovich–Moyal–Weyl correspondence provides a systematic procedure for 
constructing a family of s-parametrized trace-like maps through a kernel w sˆ ( )( ) Ω  for some 
common types of dynamical symmetry groups [24–32]. The label s historically specifies the 
ordering rules for functions of non-commutative operators in the Heisenberg–Weyl case; for 
higher groups s is used to specify elements of the family so they satisfies certain boundary 
and duality conditions: the maps labelled by s and  −s are mutually dual in the sense of equa-
tions (2.4) and (2.5).

Within this approach, operators and density matrices are in one-to-one correspondence 
with symbols: average values are obtained by convoluting the symbol of an operator with 
the dual symbol for the density matrix. In applications, the particular form of the map 
w sˆ ( )( ) Ω  strongly depends on the symmetry group of the Hamiltonian and of the underlying 
system.

The foundation of the Weyl–Moyal–Stratonovich approach is a specific symbol calculus 
mapping a product of two operators f̂  and ĝ onto a (non-commutative) star-product [16, 33] of 
their symbols W Wf g( ) ( )Ω ∗ Ω . The ∗ operation replaces the standard manipulations of opera-
tors in a Hilbert space of states by differential (or integral) operators acting on the product of 
their symbols in phase space. The axiomatic introduction to the algebra of classical observa-
bles of an associative but non-commutative star-product leads to a specific quantization pro-
cedure known as deformation quantization [34].

Given the explicit construction of the map, a formal integral representation of the star-
product is easily obtained (see e.g. [32, 25, 37]), but rarely useful in practical calculations. 
Instead, a differential form of the star-product operation, emphasizing the local nature of the 
phase space approach, is known for systems with Heisenberg–Weyl [16, 38], E(2) [44] and 
SU(2) [45–47] and some generalizations [48, 49].

Without a doubt one of the most important applications of phase space methods [50] 
remains the analysis of quantum-classical correspondence during the evolution of a system 
[51]. The phase space approach may not only substantially simplify the analysis of the dynam-
ical behavior of large-dimensional systems, but also reveals if a physical phenomenon has 
classical or essentially quantum roots. Using the star-product one can rewrite the Schrödinger 
equation for the density matrix in the form of an evolution equation (the Moyal equation) for 
its symbol. The advantage of such a formulation of the evolution problem lies in the possibility 
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of expanding the Moyal equation in powers of one or more small parameters. These so-called 
semi-classical parameters are related both to the symmetry of the interaction Hamiltonian and 
the symmetry of the map w sˆ ( )( ) Ω .

For instance, the semi-classical parameter for the HW map is often taken as the inverse 
number of excitations in the corresponding one-dimensional system, e.g. the average number 
of photons in a field mode or the energy of a particle in a one-dimensional potential, etc. For 
spin-like systems, the inverse effective spin length usually plays the role of semi-classical 
parameter [45, 52].

To lowest order in these parameters, the evolution is described by a first-order partial 
 differential equation, and provides an efficient method for studying quantum dynamics (at least 
for not very long times) in the semi-classical limit. In this so-called Liouvillian or Truncated 
Wigner Approximation (TWA), points of the initial distribution are propagated along  classical 
trajectories in phase space [53, 54, 58].

TWA describes the dynamics of nonlinear quantum systems drastically better than naive 
solutions of the Heisenberg equations of motion with partially decoupled correlators (the so-
called parametric approximation) [56–57]. This being said, quantum phenomena resulting 
from self-interference, like appearance of Schrödinger cats, are clearly beyond the scope of 
TWA [55]. Detailed discussions of TWA with applications to various physical situations can 
be found in [56–67] (see also [68], where different semi-classical methods for the description 
of evolution problems are compared).

The phase space approach is also directly generalizable to multipartite systems. The 
mapping kernel is then just a product of single-particle kernels. Although such a map is not 
practical for pictorial purposes, the semi-classical ideas can still be employed: the evolution 
equation in TWA contains only first order derivatives, and so can be solved using the method 
of characteristics and interpreted as an evolution along ‘trajectories’ in a direct product of the 
corresponding classical manifolds [57, 69, 70]. Several physically relevant multi-partite char-
acteristics of the system, such as entanglement and negativity [71], can be described within 
this framework.

The choice of map used as an interface between the quantum and classical worlds is crucial 
since it fixes the structure of the phase space manifold. As an archetypal example where differ-
ent types of phase space mappings with different symmetries can be chosen, we may consider 
a photon number preserving coupling of two field modes. A first choice is a direct H H1 1( ) ( )×  
map into two flat q  −  p phase spaces, 2 2R R⊗ . A second option is to first decompose the ini-
tial state over the SU(2)- invariant subspaces with fixed photon number, and then map states 
from each subspace on the two-dimensional sphere ,2( )θ φS . Both options are faithful for the 
description of the evolution of su(2) observables, such as moments of the Stokes operators. 
Whereas in the first case there are two semi-classical parameters, given by the inverse of the 
individual photon numbers in each mode (see for instance [61] where numerous examples of 
field-field interactions are analyzed), in the second case there is a single semi-classical param-
eter: it is the inverse sum of excitations in both modes, i.e. the inverse effective spin length. 
Thus, the SU(2) mapping is more appropriate for the analysis of the semi-classical dynamics 
of number-preserving exchange of excitations between the modes than the H H1 1( ) ( )×  map. 
As an empiric observation, it seems that the higher the symmetry of the map, the better the 
performance of the TWA [72].

In spite of its broad successes, the standard Stratonovich–Weyl mapping is not always 
adequate for the description of a variety of physical situations. This occurs when the sym-
metry group of the map does not act irreducibly on the density matrix of the system. This 
is especially important for the analysis of the dynamics and occurs for instance, when the 
Hamiltonian and/or an observable or its evolution mixes and/or contains contribution from 
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irreducible subspaces of the symmetry group used for the mapping from the Hilbert space into 
the classical phase space. In the previous example this would correspond to a situation where 
a non-number-preserving external pumping field or dissipation is present, or when analyzing 
the evolution of a single field mode under some mode-coupling Hamiltonian.

In order to characterize quantum systems, their semi-classical limits and in particular their 
semi-classical dynamics in situations where the standard approach is not directly applicable, 
one can relax the requirement of mapping into a ‘true’ phase space, keep only the covariance 
condition (under an appropriate transformation group) and maintain a one-to-one relation 
between operators and their symbols. It results that, at least in the case of the SU(2) symmetry, 
this program can be accomplished [49] and a generalized SU(2) covariant mapping endowed 
with the correct contraction limits and differential form of the star-product can be constructed. 
In addition, in the semi-classical limit an approximation corresponding to TWA in the general 
Stratonovich–Weyl framework can also be established [73] and describes an effective dynam-
ics on the four-dimensional cotangent bundle T 2∗S  proper to quantum systems with E(3) as 
dynamical group. This approach is especially useful for the description of physical systems 
with a variable number of excitations (or a variable spin) and allows to naturally extend the 
concept of phase operators introduced for fixed spin-like systems.

There are also many important physical systems for which the Stratonovich construction is 
not directly applicable: for instance optical angular momentum systems with E(2) symmetry, 
and rigid rotors and heavy tops, for which E(3) is appropriate. In these cases, different con-
structions of Wigner-like representations have been proposed in [44, 74].

Mappings into meta phase space, related to the co-adjoint representation of the symmetry 
group, with a map defined as a Fourier-like transform of the group element in the polar parametri-
zation, were analyzed in [75] and applied to representations of polarization states of light in [76].

Finally, one should not overlook various other types of maps introduced and discussed in 
the recent literature. This includes the approaches of [77, 78] applicable to physical systems 
with curved configuration space and related to the group manifold based on the ‘midpoint’ 
approach to the Wigner–Weyl mapping [78, 79].

Beyond SU(2), applications of the higher symmetry SU(n) maps may pave the way to 
investigation of the semi-classical dynamics of phenomena which can be realized in more than 
one way and have different time scales. Broadly speaking, this is a consequence of the weight 
space being no longer one-dimensional: as a result there is typically more than one path in 
weight space connecting the initial and final states, and carefully tailored Hamiltonians can 
enhance or lessen correlations or other quantum features along different paths. An example of 
this was presented in [80].

In spite of this possibility, applications of the higher symmetry SU(n) maps are limited and 
not well discussed in literature [23, 48, 81]. The general construction of phase space mappings 
is currently available for the symmetric representations of the SU(n) group, and presented in 
section 7. Some results for SU(3) maps-the next simplest case after SU(2)- are presented in 
sections  7.2 and 7.4, but technical challenges impede the development of the star-product 
machinery, resulting in a significant reduction of the systematic use of such mappings beyond 
the semi-classical limit [82].

2. Axiomatic formulation: Stratonovich–Weyl scheme

In this section we briefly outline the main ingredients of the axiomatic Stratonovich–Weyl 
construction of phase space mapping (see for an extended discussion e.g. [35, 37]). We sup-
pose for now a quantum system with states elements a Hilbert space H which carries a unitary 
irreducible representation λ of a compact Lie group G.
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2.1. The coset space

We write T ( )ωλ  for the matrix realization of the element Gω∈  in the irreducible representation 
(irrep) λ. Since λ is usually fixed, we generally omit it and use T ( )ω  to lighten the notation. 
T ( )ω  act by linear transformations on H.

The Lie algebra g of G can be organized in the usual way in a set of commuting opera-
tors spanning the Cartan subalgebra h of g, a set of raising operators n+ and a set of lowering 
 operators n−.

As H carries the irrep λ, a basis for H is also a basis for the irrep λ. Within the basis set 
there is a unique (up to a phase) highest weight state λ| ; h.w.〉 with the property that

λ ν λ λ| = | | =+h n; h.w. ; h.w. , ; h.w. 0,k k i〉 〉 〉 (2.1)

for any hk h∈  and ni n∈+ +.
Let H be the largest subgroup of G that leaves λ| ; h.w.〉 invariant (up to a phase). A clas-

sic result [83] shows the coset /G H=M  is isomorphic to the classical phase space for the 
system. The group G acts transitively on M; points in M are denoted by Ω, and an arbitrary 
element Gω∈  can be decomposed as

, , ./G H Hω η η= Ω Ω∈ ∈� (2.2)

2.2. The s-parameterized kernel Ωw sˆ ( )( )

Following Stratonovich [17], a one-to-one mapping from the space of operators L f( ˆ ) acting 
in H to the family of functions on M (labelled by an index s)

f W .f
sˆ ↔ ( )( ) Ω ∈M (2.3)

is implemented though a trace operation with a kernel w sˆ ( )( ) Ω

W f wTr .f
s s( ) ( ˆ ˆ ( ))( ) ( )Ω = Ω (2.4)

The inverse mapping is an integral transform

f w Wd ,s
f
sˆ ( ) ˆ ( ) ( )( ) ( )∫ µ= Ω Ω Ω−

M
 (2.5)

where d ( )µ Ω  is the invariant measure on the coset /G H.
The mathematical constructions of the kernel w sˆ ( )( ) Ω  is constrained to satisfy the following 

familiar rules:

 1. To guarantee that Hermitian operators f̂  are mapped to real functions W f
s ( )( ) Ω  on M, we 

require that Ωw sˆ ( )( )  be Hermitian: w ws sˆ ( ) ˆ ( )( ) ( ) †Ω = Ω ;
 2. The trace of an operator f̂  becomes a phase space integration

f WTr d f
s( ˆ ) ( ) ( )( )∫ µ Ω Ω�

M
 (2.6)

  by imposing the normalization conditions

1( ˆ ( )) ( ) ˆ ( )( ) ( )

M∫ µΩ = Ω Ω =w wTr 1, d .s s
 (2.7)

 3. The covariance of map of equation (2.3) is ensured by the requirement

T w T w , .s s( ) ˆ ( ) ( ) ˆ ( )( ) † ( ) Gω ω ω ωΩ = Ω ∈� (2.8)
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  This covariance property implies W Wf
s

f
s 1( ) ( )( ) ( ) ωΩ = Ω−

ω
� , if f T f T:ˆ ( ) ˆ ( )†ω ω=ω .

 4. Finally, the trace of a product of operators is a convolution of phase space symbols

( ˆ ˆ) ( ) ( ) ( )( ) ( )

M∫ µ= Ω Ω Ω−f g W WTr d ,f
s

g
s

 (2.9)

  when we require the kernel to have a traciality property:

( ˆ ( ) ˆ ( )) ( )( ) ( )Ω Ω′ = ∆ Ω Ω′−w wTr ,s s (2.10)

  where ,( )′∆ Ω Ω  satisfies the self-reproducing condition

∫ µ Ω ∆ Ω Ω′ Ω = Ω′
M

f fd , ,( ) ( ) ( ) ( ) (2.11)

  for any arbitrary f ( )Ω  on M. This ensures, when f̂ ρ̂= , that the quantum mechanical 
average of an operator ĝ is the phase space integration of the corresponding symbol 
weighted by a probability (quasi)-distribution.

Because the kernel is constructed to be invariant under H

T w T w0 0 , ,s s( ) ˆ ( ) ( ) ˆ ( )( ) † ( ) Hη η η= ∈ (2.12)

a convenient representation of the kernel is the explicitly covariant form

w T w T0 ,s sˆ ( ) ( ) ˆ ( ) ( )( ) ( ) †ω ωΩ = (2.13)

where T T T( ) ( ) ( )ω η= Ω  with ω η= Ω � , Hη∈  and /G HΩ∈ .
The Stratonovich s-parametrized kernel for SU(2) is given in equations (3.8). For SU(n) 

the general form is given in equation (7.8); for SU(3) the various factors required to specialize 
equation (7.8) are found in equations (7.20), (7.24) and (7.26).

2.3. s-parameterized quasi-distributions

When f̂  is the density matrix ρ̂, its symbol W s ( )( ) Ωρ  is usually called the quasi-distribution 
function of the system.

The kernel is constructed so as to satisfy requirements stemming from early work on quasi-
distribution functions. By tradition the Husimi-Berezin Q-function [18, 19] corresponds to the 
value s  =  −1:

ρ λ ρ λΩ = Ω = Ω| | Ωρ ρ
=−Q W: ; ; ,s 1ˆ → ( ) ( ) 〈 ˆ 〉( ) (2.14)

where

λ λ| Ω = Ω | Ω∈T; : ; h.w. , ,〉 ( ) 〉 /G H (2.15)

is the Perelomov coherent state [41, 42] for the irrep λ of G.
By construction the Q-function is a positive distribution (since ρ̂ is a positive operator). The 

Q-function is typically used for representation of quantum states when interference effects are 
not of major interest. From equation (2.5) it follows immediately that the kernel w sˆ ( )( ) Ω  must 
satisfy, for s  =  −1, the ‘boundary condition’

λ λΩ = Ω | | Ω−w T T; h.w. ; h.w. .1ˆ ( ) ( ) 〉〈 ( )( ) † (2.16)

The value s  =  1 is used for the so-called P-function:
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P W P: d ; ; .s 1ˆ → ( ) ( ) ( ) ( ) ⟩⟨( ) ∫ρ µ λ λΩ = Ω = Ω Ω | Ω Ω|ρ ρ ρ
=

M
 (2.17)

The P-distribution frequently has a quasi-singular behaviour: for instance, the P-symbol of a 
coherent state (2.15) is a δ-function on the classical manifold.

The condition of equation  (2.9) shows that, in general, the trace of two operators will 
require the s and  −s symbols of these operators. For this reason, the s  =  1 and s  =  −1 sym-
bols of an operator f̂  are dual to each other and known as the contravariant and covariant 
symbols, respectively. The duality between the P-function and the Q-function can be used as 
an alternative ‘boundary condition’ for the kernel.

By interpolating between s  =  −1 and s  =  1, we obtain the self-dual s  =  0 solutions [35], 
leading to the so-called Wigner symbol for which we omit the s index when s  =  0:

W W: .f f
s 0( ) ( )( )Ω = Ω= (2.18)

When f̂ ρ̂= , the Wigner quasi-distribution can be negative and is appropriate for highlight-
ing and detecting quantum interference effects especially in systems with HW symmetry. This 
negativity property has also been proposed [36] for the detection of ‘quantumness’ of states. A 
drawback of the Wigner function is its extremely noisy structure for nontrivial linear combina-
tions of basis states, which does not make it very useful for the identification of complex states.

The assignment of the values s has a direct interpretation in harmonic oscillator systems, 
where s refers to an ordering of operators. Although this interpretation is not formally pos-
sible in SU(n) systems, the values s  =  1,0 and  −1 are still traditionally associated with the Q, 
Wigner and P-functions respectively.

The s-parametrized maps can be also used for the phase space description of compound 
systems if the density matrix can be decomposed into a direct sum of operators acting in 
subspaces invariant under the action of the symmetry group. Such subspaces are typically 
determined by as a set {I} of integrals of motion; a one-to-one mapping can be established 
for every component

W I;I
sˆ ⇔ ( )( )ρ Ωρ (2.19)

in the decomposition

p .
I

I Iˆ ˆ∑ρ ρ= (2.20)

The use of integrals of motion is especially convenient if the system, once reduced to a 
submanifold with fixed constants of motion, retains SU(n) as a dynamical symmetry group so 
that the action of SU(n) does not mix the subspaces.

The standard phase space approach cannot be applied for the construction of maps (with a 
required symmetry properties) if the density matrix cannot be decomposed on the irreducible 
representations of the dynamical group.

To deal with such cases we may relax the requirement of mapping operators into distribu-
tions in a classical phase space but still try to fulfill the Stratonovich–Weyl conditions. Neither 
will the invariance property of equation (2.12) be necessarily satisfied, nor will interpretation 
of the Q- and P-distribution in terms of Perelomov-like coherent states. Details of this kind of 
generalized map for SU(2) are presented in section 4.

It follows from equation (2.5) that the density matrix can be expressed in the so-called 
tomographic form, i.e. in terms of probability of its projection on the coherent states [15, 86]:
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wd ; h.w. ; h.w. ,1ˆ ( ) ˆ ( )⟨ ˆ( ) ⟩( )∫ρ µ λ ρ λ= Ω Ω | Ω |
M

 (2.21)

( ) ˆ ( )〈 ˆ 〉( )
M∫ µ λ ρ λ= Ω Ω Ω| | Ωwd ; ; ,1 (2.22)

where T Tˆ( ) ( ) ˆ ( )†ρ ρΩ = Ω Ω  is the transformed density matrix. In practice, equation  (2.21) 
often leads to substantial errors due to a singular nature of the mapping kernel w 1ˆ ( )( ) Ω , includ-
ing for compact groups in limit of large dimensions.

As a result it may be more convenient to reconstruct directly from the experimental data the 
Wigner function of the state, using

( ) ( )〈 ˆ( ) 〉 ( ˆ ( ) ˆ ( ))( ) ( )∫ µ λ ρ λΩ′ = Ω | Ω | Ω Ω′ρ
M

W w wd ; h.w. ; h.w. Tr .1 0 (2.23)

In section  5.1 we discuss applications of phase space methods to the tomography of a 
 density matrix ρ̂ for spin-like systems.

2.4. Dynamics, semi-classical limit and TWA

The star-product takes into account the non-commutative features of quantum mechanical 
operators. It is formally defined through

W W W W WL: ,f
s

g
s

fg
s

f g f
s

g
s

,( ) ( ) ( ) [ ( ) ( )]( ) ( ) ( ) ( ) ( )Ω ∗ Ω = Ω = Ω Ω (2.24)

where Lf g,  is a differential or integral operator acting on the ordered product of symbols: 
L Lf g g f, ,≠  in general. In the particular case of the Wigner mapping, the star-product operation 
satisfies the useful property

W W W Wd d ,f g f g
0 0 0 0( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫µ µΩ Ω ∗ Ω = Ω Ω Ω

M M
 (2.25)

which follows immediately from the integral representation of Lf,g,

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )∫ ″ ″ ″µ µΩ = Ω′ Ω Ω Ω′ Ω Ω′ ΩK
M

W W Wd d , , ,fg f g
0 0 0

 (2.26)

w w w, , Tr .0 0 0( ) ( ˆ ( ) ˆ ( ) ˆ ( ))( ) ( ) ( )′ ′″ ″Ω Ω Ω = Ω Ω ΩK (2.27)

The star-product enables the ‘translation’ of the operator algebra into operations with phase 
space functions.

Using the star-product one can represent the Schrödinger equation for the density matrix

Hi , ,t ˆ [ ˆ ˆ]ρ ρ∂ = (2.28)

as a Liouville-type evolution for s-parametrized symbols, called the Moyal equation:

W W Wi , ,t
s

H
s s

M( ) { ( ) ( )}( ) ( ) ( )∂ Ω = Ω Ωρ ρ (2.29)

where W H
s ( )( ) Ω  is the symbol of the Hamiltonian Ĥ of the system and

W W W W W W, : ,f
s

g
s

M f
s

g
s

g
s

f
s{ ( ) ( )} ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )Ω Ω = Ω ∗ Ω − Ω ∗ Ω (2.30)

is the so-called Moyal bracket with ∗ denoting the star-product.
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To obtain the Moyal equation  of equation  (2.29) for a wide class of physically mean-
ingful Hamiltonians, one can successfully use instead of the full star-product machinery 
 correspondence rules describing the action group generators on the density matrix. The 
 formal expressions of group generators acting on the density matrix are sometimes called the 
Bopp operators [87, 88, 90] or D-operator algebras [42, 89].

In practice, the local (differential) form of the star-product operator Lf g,  is fairly com-
plicated even for systems having H(1) or SU(2) as symmetry groups. In applications, the 
star-product is often limited to the zeroth and first order terms of the expansion of Lf g,  in a 
semi-classical parameter ε that captures the strength of quantum fluctuations through some 
physical property frequently expressed in terms of the inverse of the total energy, the num-
ber of photons, the spin size, the inverse dimension of the irrep λ of the symmetry group, 
etc. Specialized forms of the semi-classical parameter will be considered in sections 3.2, 4.4 
and 7.4.

The expansion of the star-product immediately yields a very convenient feature of a phase 
space representation of the quantum evolution: the possibility of expanding the Moyal  brackets 
in series in the semi-classical parameter ε to eventually arrive at a first-order Liouville-
type equation  [53] describing the time evolution of the initial phase space distribution via 
 trajectories defined through a set of first-order ordinary differential equations.

In light of the correspondence principle, the leading order terms of the Moyal equation can 
be represented in the form of Poisson brackets of the symbols of the functions f and g on the 
classical manifold, so that the s-parametrized Wigner function dynamics is governed by

W W W, correction terms,t
s s

H
s

P( ) { ( ) ( )}  ( ) ( ) ( )ε∂ Ω = Ω Ω +ρ ρ (2.31)

where f g, P{ ( ) ( )}Ω Ω  is the Poisson bracket on the manifold. Dropping the correction terms on 
the rhs of equation (2.31) gives the so-called truncated Wigner approximation, or TWA. This 
scheme has been widely used in numerous applications (for a recent review of applications to 
HW case see e.g. [63]).

The approximate evolution equation of equation (2.31) can be solved using the method of 
characteristics, resulting in an evolution of the Wigner function of the form

Ω| = Ω − | =ρ ρW t W t t 0 ,s s( ) ( ( ) )( ) ( ) (2.32)

where t( )Ω  denotes classical trajectories. These trajectories are solutions of the classical 
Hamiltonian equations, i.e. each point of the initial quantum distribution evolves along the 
corresponding classical trajectory.

The evolution distorts the initial distribution but cannot convert positive regions of the 
Wigner function into negative regions (and vice versa); this follows from conservation of 
local Poincaré invariants under the action of Poisson bracket. In this sense, the phase space 
distribution in the TWA behaves as a incompressible fluid, which greatly facilitates an intui-
tive interpretation of the dynamics of the system. In the case of compound systems with the 
density matrix of the form (2.20) the evolution of the whole system is described by a weighted 
sum of the dynamics in each submanifold, with the weight pI for each submanifold obtained 
from equations (2.19) and (2.20):

∑Ω| = Ω − | =ρW t p W t I t; 0 ,s

I
I

s
I( ) ( ( ) )( ) ( )

 (2.33)

where the classical trajectories Ω tI ( ) in different manifolds satisfy the same Hamiltonian 
equations and differ only by the value of the integral of motion.
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The correction terms are known for the Heisenberg–Weyl and SU(2) systems; they are 
generically expanded in terms of the semi-classical parameter as follows:

scorrection terms .2 3  ( ) ( )ε ε= +O O (2.34)

The net size of the correction terms containing higher-order derivatives depends not only 
on the exponent of the semi-classical parameter but also on a ‘dynamical part’ which is closely 
related to the degree of non-linearity of the Hamiltonian. In addition, in systems for which 
equation  (2.20) holds, the semi-classical parameter ε is usually a function of integrals of 
motion related to the number of excitations.

Clearly, the 2( )εO  terms disappear for the s  =  0 (Wigner) mapping. The absence of this 
second order contributions 2ε∼  is especially important in several physically interesting situa-
tions where, due to non-linearity of the Hamiltonian, the value of first correction does not tend 
to zero in the semi-classical limit. This explains why the Wigner function dynamics is usually 
used for the semi-classical description of quantum dynamics.

The TWA of equation (2.32) describes well the initial stage of the nonlinear dynamics—
when one can neglect self-interference—for a class of initial so-called semi-classical states 
[2, 23, 56–58, 61, 62]. In applications, these semi-classical states are represented as localized 
distributions (as for instance, are coherent states) and the ‘classical domain’ of their evolution, 
i.e. the timescale over which they faithfully follow the classical trajectories, is related to their 
transformation properties under the action of the invariance group of the Hamiltonian [91].

The semi-classical solution of equation  (2.32) allows the calculation of mean values of 

observables { ˆ}fj  leading to considerably better results than obtained in the parametric approx-
imation, which consists in decoupling correlators in the Heisenberg equations:

〈ˆ ( )〉 (〈 ˆ ( )〉)∑β∂ =f t F f t ,t j
k

jk k (2.35)

where the functions ( ˆ )Ffk
 (which need not be linear) are defined through

∑β =F f i f H, .
k

jk k j(ˆ ) [ ˆ ˆ ] (2.36)

The TWA leads to the evolution equation for average values of fj in the form

∑α∂ =f t F f t ,t j
k

jk k〈ˆ ( )〉 〈 ( ˆ )( )〉 (2.37)

where

s ,jk jk
2( ) ( )α β ε ε= + +O O (2.38)

in accordance with (2.34). This allows the use the semi-classical solution (2.32) for the 
description of short-time physical phenomena - for instance, squeezing—attributed to the 
deformation of the initial distribution.

One indicator of deviation from the semi-classical evolution could be taken to be higher 
moments of the Wigner distribution

( ) ( )
M∫π

=
+

Ω Ω|− >ρ⎜ ⎟
⎛
⎝

⎞
⎠m t

S
W t k

2 1

4
d , 2.k

k
k

 
(2.39)

In the semi-classical picture, where the evolution of phase space coordinates is generated 
by canonical transformations, these higher moments are time-independent. Thus, the devia-
tions from their initial values describe a spread of the initial distribution in phase space due 
to purely quantum effects in the evolution. More precisely, since m t 0 0t k( )∂ = = , the widths 
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of the mk(t) at t  =  0, given by δ ∼∂ =m t 0k t k
2 ( ) define the timescales over which the semi-

classical approximation allows a description of the dynamics of different sets of quantum 
observables. In practice, the fourth-order moment is most commonly used [92] at it is positive 
and captures well the evolution of quantum interference effects, and the so-called semiclassi-
cal time, τsem can be defined as τ δ∼ −

sem 4
2.

3. The SU(2) Stratonovich–Weyl mapping

The Moyal-Stratonovich quantization program encapsulated in equations (2.4) and (2.5) can 
be carried out in a systematic way for symmetric representations of compact semi-simple 
groups. The group SU(2) is the simplest case where a mapping kernel wS

sˆ ( )( ) Ω  can be con-
structed in this program for a system with a single value of S. Owing to the simplicity of the 
kernel, a number of analytical results can be obtained, as exemplified below. In particular, a 
local form of the star-product can be explicitly found, so that the semi-classical limit of the 
Stratonovich–Weyl mapping becomes easily accessible.

3.1. The kernel and some properties of the resulting mappings

We consider a 2S  +  1-dimensional Hilbert space H of that carries a unitary irreducible rep-
resentation of the SU(2) group, with group element : , ,( )ω φ θ ψ=  expressed in terms of three 
Euler angles leading to a S S2 1 2 1( ) ( )+ × +  matrix representation T ( )ω  of SU 2( )ω∈  realized 
by the sequence of exponentiations

T e e e , 0 2 , 0 , 0 4 .S S Si i iz y z( ) ⩽ ⩽ ⩽ˆ ˆ ˆω φ π θ π ψ π= < < <φ θ ψ− − − (3.1)

Here S su 2x y z, ,
ˆ ( )∈  are generators of the SU(2) group and satisfy the usual angular momentum 

commutation relations.
The Hilbert space H is spanned by the orthonormal basis S m m S S, , , ...,{ ⟩ }| = − . The basis 

elements are (as usual) chosen to be eigenstates of Sẑ and S S SS x y z
2 2 2 2ˆ ˆ ˆ ˆ= + + ,

S S m m S m S m S S S mS, , , , 1 , .z
2ˆˆ ⟩ ⟩ ⟩ ( ) ⟩| = | | = + | (3.2)

The usual SU(2) coherent states S; ⟩|Ω  are defined (up to a global phase) by action of the 
displacement operator

( ) ( ˆ ˆ ) ( )θ θ φΩ = − − Ω =φ φ
+
−

−
⎡⎣ ⎤⎦T S Sexp e e , : , ,1

2
i i (3.3)

on the highest weight state, with explicit expression in terms of ,( )θ φ  given by:

∑ θ θ

|Ω = Ω |

=
+ −

|φ

=−

− + −

S T S S

S

S m S m
S m

; ,

2 !

! !
e cos sin , .

m S

S
m

S m S m
i 1

2

1

2( ) ( )
〉 ( ) 〉

( )
( ) ( )

〉 (3.4)

The corresponding classical phase space, like the coherent states, depends only on the 
two coordinates ,( )θ φ , and is isomorphic to the 2-sphere SU U, 2 12( ) ( )/ ( )θ φ =S , where U(1) 
corresponds to the transformation e Si ẑψ−  which leaves the highest weight state S S, ⟩|  invariant 
up to a phase.

The s-parametrized kernel wS
sˆ ( )( ) Ω  satisfying the Stratonovich–Weyl conditions is well-

known [17, 32, 35]. It is constructed from a set of tensor operators [93]
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T
L

S

S

m

L

M

S

m
S m S m

2 1

2 1
; , , ,LM

S

m m S

S

,

ˆ ⟩ ⟨∑=
+
+

| |
′

′
=−′

 (3.5)

where L S0, 1, , 2= …  and M L L, ,= − …  and where ;j

m

j

m

J

M
1

1

2

2
 is an su(2) Clebsch–Gordan 

coefficient. The tensors of equation (3.5) form an orthogonal basis of operators in the space of 
S S2 1 2 1( ) ( )+ × +  matrices acting on the system and are transformed under the SU(2) group 

action of equation (3.1) as

T T T D T ,LM
S

M L

L

M M
L

LM
S( ) ˆ ( ) ( ) ˆ† ∑ω ω ω=

=−′
′ ′ (3.6)

where

D L M T L M, , ,M M
L ( ) ⟨ ( ) ⟩ω ω= | |′′ (3.7)

is the Wigner D-function.
In terms of these tensors the kernel wS

sˆ ( )( ) Ω  is written in the expanded form

ˆ ( ) ( ) ˆ( ) ∑ ∑π
Ω =

+
Ω

= =−

−
∗w

S

S

S

L S

S
Y T

4

2 1
;

0
,S

s

L

S

M L

L s

LM LM
S

0

2

 (3.8)

with Y Y: ,LM LM( ) ( )θ φΩ =  the usual spherical harmonics. In this way the kernel automatically 
satisfies the required transformation and normalization properties given in equations (2.7)–
(2.10), where integration is over 2S  with the measure

∫ ∫ ∫π π
θ θ φ

+
Ω =

+ π πS S2 1

4
d

2 1

4
d sin d .

0 0

2
 (3.9)

The kernel wS
sˆ ( )( ) Ω  can also be given in the explicitly covariant form

w T w T0 ,S
s

S
sˆ ( ) ( ) ˆ ( ) ( )( ) ( ) †Ω = Ω Ω (3.10)

w
S

S

L S

S

L

S
T0 ;

0

2 1

2 1
,S

s

L

S s

L
S

0

2

0ˆ ( ) ˆ( ) ∑=
+
+=

−

 (3.11)

with w 0S
sˆ ( )( )  explicitly invariant under z-rotations in the basis of equation (3.2):

w we 0 e 0 .S
S
s S

S
si iz zˆ ( ) ˆ ( )ˆ ( ) ˆ ( )=ψ ψ− (3.12)

The particular case s  =  −1 is just a projection into the highest state:

= | |=−w S S S S0 , , ,S
s 1ˆ ( ) 〉〈( ) (3.13)

as discussed in equation (2.16).
The symbol of an operator f̂  transformed by a group element T as given in equation (3.1), 

f T f T:ˆ ( ) ( ) ˆ ( )†ω ω ω=  is recovered from that of f̂  using the covariance condition equation (2.8)

W Wn n ,f
s

f
s 1( ) ( )( )

( ) ( ) ω=ω
− � (3.14)

where it is convenient to consider the argument of the symbol as a unit vector

n cos sin , sin sin , cos( )φ θ φ θ θ= (3.15)
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pointing in the direction ,θ φ on the sphere, so that the group element acts on it as a 3 3×  
matrix [93].

An operator acting in the 2S  +  1 Hilbert space can be decomposed on the basis of the irre-
ducible tensor operators equation (3.5) as

f f T f T f, Tr .
L

S

M L

L

LM LM
S

LM LM
S

0

2
ˆ ˆ (( ˆ ) ˆ )†∑ ∑= =

= =−
 (3.16)

By linearity its symbol is the sum of symbols of the tensor components:

∑ ∑π
Ω =

+
Ω

= =−

−

W
S

S

S

L S

S
f Y

2

2 1
;

0
.f

s

L

S

M L

L s

LM LM
0

2

( ) ( )( )
 (3.17)

Some simple examples are provided in table 1.

In a manner reminiscent of Heisenberg–Weyl systems, the symbols W f
1 ( )( ) Ω±  are related 

through a simple transformation:

∫ ′∑ ζΩ = Ω Ω′−

=

W
S

S

L S

S
W P;

0
d cos ,f

s

L

S s

f
s

L
0

2 2

2
( ) ( ) ( )( ) ( )

S
 (3.18)

where s 1=± , PL(z) is the Legendre polynomial, and

cos cos cos sin sin cos .( )ζ θ θ θ θ φ φ= + −′ ′ ′ (3.19)

The symbol W f
1 ( )( ) Ω−  is obtained from W f

1 ( )( ) Ω  by a smoothing transformation, as becomes 
clear for S 1�  since

( )+
+

−
+
+

�
⎡
⎣⎢

⎤
⎦⎥

S

S

L S

S

L

S

L L

S
;

0

2 1

2 1
exp

1

2 1
,

2

 (3.20)

while the inverse transformation becomes singular in this limit.
The kernel for a multipartite system is a product of single particle kernels given in equa-

tion (3.8), and the corresponding classical manifold is ...2 2× ×S S . It follows that

W , ..., Tr .s
N S

s
S N
s

N1 ;1 1 ;( ) ( ˆ ( ) ˆ ( ))( ) ( ) ( )ρ ω ωΩ Ω = Ω ⊗…⊗ Ωρ (3.21)

The differential form of star-product ∗ that depends on the local coordinates Ω,

Ω ∗ Ω = ΩW W W WL:f
s

g
s

f g f
s

g
s

,( ) ( ) ( )( )( ) ( ) ( ) ( ) (3.22)

Table 1. Some simple operators and their symbols. Here: A B,{ ˆ ˆ}+ is the anticommuta-
tor, = − + +− +A S S S S2 1 2 3 1S

s s s1 2 1 2[ ( )] [( )( )]( ) ( )/ ( )/  and n is given in equation (3.15).

Operator Symbol

Sî W S S n1
S
s S

S

s
i1

2

i ( )( ) ( )ˆ
( ) /
Ω = +

+

−

S S,i k{ ˆ ˆ }+ W A n n i k,
S S
s

S
s

i k,i k
( ) ( ){ ˆ ˆ }

( ) ( )Ω = ≠
+

S j
2ˆ W A n

S

s
S
s

i
S S1

2
2 1

3

1

3
j

2 ( )( )
ˆ
( ) ( ) ( )Ω = − + +
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was found in [45, 46] (see also [47]) and has a somewhat involved form given in equa-
tion (B.1) of the appendix. In what follows we examine its approximate form in the asymptotic 
limit S 1� .

3.2. Semi-classical limit

The semi-classical limit in spin-like systems is related to large value of spin or, alternatively, 
large dimension of SU(2) representations. It is natural to choose the semi-classical param eter 
as S2 1 11( )ε = + − � . The semi-classical states are usually associated with states having a 
smooth and localized distributions with extension S∼ . Algebraically, the density matrix 
of semi-classical states is decomposed only on low rank tensors of equation (3.16). For such 
states, one can provide a quite detailed description of the kinematic and dynamic.

3.2.1. The kernel ΩwS
sˆ ( )( ) . The actual expression for symbols of even simple physical states 

can be quite involved, especially for the s  =  0 (Wigner) mapping. In the limit of large spin, 
S 1� , an asymptotic expression for wS

0ˆ ( )( ) Ω , valid for integer S, can be obtained [94] as

w
S

S n
1 1 e ,S

S S n0 i
ˆ

ˆ ( ) ( ) ˆ( )
⎛

⎝
⎜

⎞

⎠
⎟Ω − +

⋅ π− ⋅� (3.23)

ˆ ( ) ( ) 〉〈( ) ∑= − + | |π−⎜ ⎟
⎛
⎝

⎞
⎠w

m

S
S m S m0 1 1 e , , ,S

S

m

m0 i
 (3.24)

where S S SS , ,x y z
ˆ ( ˆ ˆ ˆ )=  and n is the unit vector of equation (3.15).

For instance, the Wigner function of the state S m, ⟩|  acquires the following asymptotic form

W d
m

S
1 2 1 cosm

S
mm
S( ) ( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠θ θΩ − +� (3.25)

S
d S m S m

1

2
sin e 2 1 c.c. .

S

mm
Si

1( )( ) ( ) ( )( )θ θ+
−

− + + +φ−
+ (3.26)

The symbols of general coherent states are very often useful in applications; these can be 
easily obtained using the covariance property of equation (3.14), i.e. by rotating the symbol of 
the state S S, ⟩|  so that W n nn 1m S z

S
z

0 2( ) ( )( ) += � . In this manner, for instance, the Wigner function 
of an equatorial coherent state 2, 0/ ⟩θ π φ| = =� �  is just

θ φ θ φΩ = +π
−W sin cos 1 sin cos .S

2
2 1( ) ( ) [ ]/ (3.27)

We also note that the approximate kernel equation  (3.23) leads to an accurate form of 
Wigner function, including situations involving macroscopic quantum superpositions such as 
Schrödinger cat states 〉 〉∼| + | −S S S S, , .

The asymptotic form of the star-product operator L f g
s
, ( )( ) Ω  in the limit S 1�  is also consid-

erably simplified

s sL
2

1 1 ,f g
s

f g f g,
21 1( ) [( ) ( ) ] ( )( ) S S S Sε
εΩ = ⊗ + − ⊗ − + ⊗ +− + + − O (3.28)

θ
= −∂ ∂θ φ

± ⎜ ⎟
⎛
⎝

⎞
⎠∓S :

i

sin
. (3.29)
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where the action of the operation ⊗ on the product of symbols is defined as

W W W W: .f g f
s

g
s

f
s

g
s( ) ( ) ( ) ( ( ))( ( ))( ) ( ) ( ) ( )S S S S⊗ Ω Ω = Ω Ω− + − + (3.30)

A consequence of equation (3.28) is reflected in the expansion of the Moyal bracket of 
equation  (2.30), which reduces to the Poisson bracket on the 2S  sphere in the large spin 
limit [45]:

W W W s2 , ,t
s s

H
s

P
2 3( ) { ( ) ( )} ( ) ( )( ) ( ) ( )ε ε ε∂ Ω = Ω Ω + +ρ ρ O O (3.31)

where , P{ }⋅ ⋅  denotes the Poisson brackets on the sphere:

P,
1

sin
.P{ } ( ) ˆ

θ
⋅ ⋅ = ∂ ⊗ ∂ −∂ ⊗∂ =φ θ θ φ (3.32)

The first-order correction terms on the right of equation (3.31) have the form

  { } { } ( )( ) ( ) ( ) ( )ε ε= − +ρ ρ
⎡⎣ ⎤⎦L L Os W W W Wcorrection terms , , ,s

H
s

P
s

H
s

P
2 2 2 3 

(3.33)

where

cot
1

sin
,2

2

2 2

2

2

⎡
⎣⎢

⎤
⎦⎥θ

θ
θ θ φ

= −
∂
∂
+

∂
∂
+

∂
∂

L (3.34)

is the su(2) Casimir operator on the sphere, so that Y L L Y, 1 ,LM LM
2 ( ) ( ) ( )θ φ θ φ= +L .

As an example of the type of second-order correction terms that occur, we may observe 
that the Hamiltonian

H S ,z
2ˆ ˆχ= (3.35)

leads to the following exact evolution equation for the Wigner function

( ) ( ) ( ) ( )L Lχ
ε

θ ε θ θ∂ Ω = − Φ − + ∂ Φ ∂ Ωρ θ φ ρ
−⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥W W

1

2
cos

1

2
cos sin ,t

2 1 2
 

(3.36)

where the function 2( )Φ L  is defined as:

2 2 1 2 1 .2 2 2 2 2 2 2
1 2

( ) ( ) ( )
/⎡

⎣⎢
⎤
⎦⎥ε ε εΦ = − + + − −L L L (3.37)

If the limit of 1ε� , the leading term of equation (3.36) is 1ε∼ − ; the terms of 1( )O  vanish 
and the first correction terms are ε∼ :

( ) [ ˆ ] ( )χ ε θ ε∂ Ω = − ∂ + Ξ Ωρ φ ρ
−W Wcos ,t

1 (3.38)

where Ξ̂ is a diffusion-like operator containing higher order derivatives:

ˆ [ ( ) ]Lθ θΞ = − + + ∂ ∂θ φ
1

2
cos 1 sin .2 (3.39)

3.2.2. Correspondence rules. In applications, the correspondence rules (also called Bopp 
operators or D-algebra elements) are very useful [42, 88, 90]:

ρ

ρ
+ Λ Ω Ωρ⎪

⎪
⎜ ⎟

⎪

⎪
⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝

⎞
⎠∓ L

S

S
W

1

2
,

z

z
z

s s
0

ˆ ˆ

ˆ ˆ
↔ ( ) ( )( ) ( ) (3.40)
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ˆ ˆ

ˆ ˆ
↔ ( ) ( )( ) ( )

ρ

ρ
+ Λ Ω Ωρ

±

±
± ±⎪

⎪
⎜ ⎟

⎪

⎪
⎫
⎬
⎭

⎧
⎨
⎩

⎛
⎝

⎞
⎠∓ L

S

S
W

1

2
,s s (3.41)

where z,L±  are the first order differential operators,

θ= ±∂ + ∂ = − ∂φ
θ φ φ±

±L Le i cot , i .z
i ( ) (3.42)

satisfying the su(2) commutation relations.

The operators s
0, ( )( )Λ Ω±  have an exact simple form for =±s 1 [89]:

ε
θ θ θΛ Ω = + + ∂θ± ⎜ ⎟

⎛
⎝

⎞
⎠s s

1

2

1
cos cos sin ,0

1 ( )( ) (3.43)

s
e

sin

2 2
cos e sin 1 .z

1 i i( ) [ ( )]( ) L Lθ
ε

θ θΛ Ω = − ±φ φ
±
± ±

±
±∓ (3.44)

Unfortunately the corresponding exact expressions for the Wigner function (s  =  0) are rather 

intricate (but provided in equations  (B.10) and (B.11)), although the operators 0
0ˆ ( )

( )
Λ Ω  and 

0ˆ ( )
( )
Λ Ω±  do have good asymptotic properties:

ε
θ ε

θ
ε

εΛ Ω = + Λ Ω = +φ
±

±1

2
cos , e

sin

2
,0

0 0 i( ) ( ) ( ) ( )( ) ( )O O (3.45)

where no first-order terms appear in the expansion of ( )( )Λ Ω±0,
0  on ε.

3.3. Contraction limits

Two interesting non-compact groups can be obtained as contractions [84, 85] from the SO(3) 
group: the Heisenberg–Weyl group and the group E(2) of rigid motions of the 2-dimensional 
Euclidean plane. It results that the contraction procedure can be performed also on the level 
of mapping operators so as to obtain from equation (3.8) (for integer values of S) kernels for 
HW and E(2) groups.

3.3.1. Contraction to the Heisenberg–Weyl group. Let us assume the density matrix for the 
system has a sharp maximum in the vicinity of the lowest state of the 2S  +  1 dimensional rep-
resentation, k S j S,ρ − − , with k j S, � . Geometrically, these states with m S≈−  are concentrated 
near the south pole of the Bloch sphere, so that in the kernel of equation (3.8) one should 
consider →θ π [94, 95].

For S 1� , the matrix elements of su(2) generators between states in this region become 
indistinguishable (up to scaling) from those of Heisenberg–Weyl algebra [84, 96]:

S S a S S a S N S2 , 2 , ,z
ˆ ˆ ˆ ˆ ˆ ˆ† −+ −� � � (3.46)

where N̂ satisfies

N a a N a a a a N S N a a, , , , , 1 , .[ ˆ ˆ ] ˆ [ ˆ ˆ] ˆ [ ˆ ˆ ] ˆ / ˆ → ˆ ˆ† † † †= = − = − (3.47)

Using the asymptotic form of equation  (3.23) with →θ π and S →∞ so the product 
r S 2 sin/ θ=  remains finite, one obtains

ˆ ( ) → [ ( ˆ )( ˆ )] ˆ ( )( ) † ( )π α α αΩ − − =∗w a a w2 exp i ,S
0 0 (3.48)
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r e ,i α = φ− (3.49)

i.e. exactly the Wigner kernel for Heisenberg–Weyl group [97].
The contraction of wS

1ˆ ( )( ) Ω±  to the corresponding HW kernels is done by observing that 
the spin coherent states of equation (3.4) are generated by applying the displacement operator 
T ( )ω  of equation (3.3) for ,( )θ π ϑ φ= −  to the lowest state of the representation, S S, ⟩| − , so 
that in the vicinity of the south pole, where 1ϑ� , the displacement on the sphere T ( )Ω  con-
tracts to a displacement in the plane:

T T a aexp ,( ) → ( ) ( )†α α αΩ = − ∗ (3.50)

with α given in equation (3.49). Thus, identifying S S, ⟩| −  with 0⟩|  in the Fock basis we recover 
the projector on the harmonic oscillator coherent state. A similar contraction to HW is obtained 
in the vicinity of the north pole of the Bloch sphere.

3.3.2. Contraction to the E(2) group. If the elements of the density matrix kk( ˆ)ρ ′ that differ 
significantly from 0 are such that k k S,| | | |′ � , the states are now concentrated in a band not 
too far from the equator of the Bloch sphere. For these states the matrix elements of su(2) 
generators become [84], in the limit S →∞, indistinguishable from those of the e(2) algebra, 
i.e. with the scaling

S

S
e

S

S
e S e, ,x

x
y

y z z

ˆ
ˆ

ˆ
ˆ ˆ ˆ� � � (3.51)

the commutation relations are now those of e(2), the Euclidean algebra in two dimensions:

e e e e e e e e, i , , i , , 0.z x y y z x x y[ ˆ ˆ ] ˆ [ ˆ ˆ ] ˆ [ ˆ ˆ ]= = = (3.52)

In e(2), the operators e e,x y( ˆ ˆ ) generate translations, while eẑ still generates rotations in the xy 
plane. The representation space is spanned by orthonormalized basis m⟩|  of eigenstates of the 
operator eẑ:

| = | = − ∞� � �e m m m m, , ..., with .ẑ 〉 〉 → (3.53)

From the asymptotic form of equation  (3.24), and using in the covariant representation of 
equation (3.10), one obtains

w w z T z T z1 e ,S
S e0 i zˆ ( ) → ˆ( ) ( ) ( ) ( )( ) ˆ †Ω = − π− (3.54)

T z z e zeexp i ,( ) [ ( ˆ ˆ )]= − +∗
+ − (3.55)

where z tan e
2

i= θ φ and e e eix yˆ ˆ ˆ= ±± .

4. Generalized SU(2) Wigner-like mapping

The standard SU(2) mapping cannot be directly applied to systems with variable spin, for 
which the representation space is not restricted to a single SU(2) invariant subspace. Although 
any state can still be expanded on the angular momentum basis, the density matrix and some 
observables cannot be represented in terms of projectors on distinct SU(2) irreducible sub-
spaces. Simple realizations of this type of systems include two coupled angular momenta, the 
linear rigid rotor, two classically-pumped interacting field modes are of considerable interest 
in physical applications.
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In order to map states and observables of this type of quantum systems into a set of c-num-
ber functions with good properties under global SU(2) transformations, it is mandatory to use 
an operational basis that spans the whole angular momentum space. This basis is formed by 
the generalized SU(2) tensors [98].

Moreover, a generalized kernel , ,j
sŵ ( )( ) φ θ ψ  [49] which enables this mapping depends not 

only on the spherical angles ,θ φ but also on a third ‘angle’ ψ and a new discrete index j; the 
latter two are initially formal parameters but they will be seen to take on physical meaning 
when we later deal with applications [73].

4.1. Generalized tensors

Suppose the Hilbert space H contains multiple SU(2) irreps and is thus spanned by

{ 〉 }H = | = − … = …J m m J J JSpan , ; , , ; 0, , 1, , .1

2

3

2
 (4.1)

We first construct a set of tensor operators which connect different SU(2) subspaces [98]:

T
K

J

J

m

K

q

J

m
J m J m

2 1

2 1
; , , .Kq

J J

mm

ˆ ∑=
+
+′

′
′

′ ′
′

′
 (4.2)

The tensors transform like the su(2) basis states K q, ⟩|  under commutation with the su(2) 
generators. They form a complete set and any operator in H can be expanded as

f f T f T f, Tr .
J J K J J

J J

q K

K

Kq
J J

Kq
J J

Kq
J J

Kq
J J

, 0, 1
2

,1

ˆ ˆ (( ˆ ) ˆ )†∑ ∑ ∑= =
= …

∞

= −

+

=−′ ′

′
′ ′ ′ ′

 (4.3)

The expansion of equation (4.3) can be re-arranged in the form of direct sum on the sectors 
with fixed values of j J J= +′ :

f f f f T, ,
j

j j
K

j

q q K

K

Kq

j q j q

Kq

j q j q

0, 1
2

,1 0, 1
2

,

1
2

1
2

1
2

1
2ˆ ˆ ˆ ˆ

{ }

( ) ( ) ( ) ( )
∑ ∑ ∑= =

= …

∞

= =−

+ − + −

′

′ ′ ′ ′

 (4.4)

where the sum over K starts at K  =  0 when j is integer, and starts at K 1

2
=  when j is half-integer.

These tensors will in general be represented by rectangular matrices with J2 1( )+′  columns 

and (2J  +  1) rows. Operators f ĵ in equation (4.4) for which j is half-integer are necessarily 
rectangular and constructed from rectangular tensors of the form given in equation (4.2). On 

the other hand, operators f ĵ for which j is an integer may or may not be square tensors. The 
square tensors of equation (3.5) are, in this notation, matrices of dimension j j1 1( ) ( )+ × +  

since j S2 Z= ∈ + in this case; for the T LM
Sˆ  tensors of equation (3.5) we have q 0=′  (so that j 

is necessarily integer) in the expansion of equation (4.4); in addition, these tensors act entirely 
within a ( j  +  1)-dimensional SU(2) subspace.

Figure 1 is a pictorial description of how various elements of these non-square tensors 
appear in the decomposition of f̂  on j-sectors.

4.2. Generalized kernel

For the operators of equation  (4.3), a convenient SU(2) covariant Wigner-like mapping to 
c-number functions, depending on three Euler angles , ,( )ω φ θ ψ=
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ω⇔ =f W j, 0, , 1, ... ,f
j s 1

2
ˆ { ( ) } ( ) (4.5)

was proposed in [49]. The j-symbols

W fTr ,f
j s

j
sw( ) ( ˆ ˆ ( )) ( ) ( )ω ω= (4.6)

are obtained by using a generalized kernel

K

j

2 1

1j
s

K

j

0, 1
2

w
{ }

ˆ ( )( ) ∑ω =
+
+

=
 (4.7)

j q

j

j q

j q

K

q

j q

j q
D T

1

1
; ,

q q K

K
s

qq
K

Kq

j q j q

,

1

2
1

2

1

2
1

2

1
2

1
2

( )

( )

( )

( )
( ) ˆ ( ) ( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑ ω×

− +
+

−

−

+

+

′ ′

′ ′

′

′=−

−
+ −

′
′

′ ′

 

(4.8)

where the SU(2) functions Dqq
K ( )ω′  are defined in equation (3.7). The kernel of equation (4.8) 

can be represented in an explicitly covariant form

T T0 ,j
s

j
sw wˆ ( ) ( ) ˆ ( ) ( )( ) ( ) †ω ω ω= (4.9)

with

K

j
0

2 1

1j
s

K

j

q K

K

0,1 2

ŵ ( )( )

{ / }
∑ ∑=

+
+= =−

 (4.10)

Figure 1. A pictorial representation of the various tensorial j-subspaces arising in the 
decomposition of operators into square and rectangular tensors.
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j q

j

j q

j q

K

q

j q

j q
T

1

1
; .

s

K q

j q j q
1

2
1

2

1

2
1

2

1
2

1
2

( )

( )

( )

( )
ˆ ( ) ( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟×

− +
+

−

−

+

+

−
+ −

 (4.11)

We point out that 0j
1ŵ ( )( )−  is not a diagonal rank-one tensor as in the SU(2) case of equa-

tion (3.8); nevertheless we have the relation

w( ) ˆ ( )
/

( )∑ + = Φ Φ
=

−j 1 0 ,
j

j
0,1 2,1,..

1
 (4.12)

S S S2 1 , .
S 0,1 2,/
∑Φ = +

= …

∞

 (4.13)

The kernels of equation (4.8) are Hermitian and normalized

∫ ∫ ∫π
φ θ θ ψ φ θ ψ

+ π π πj 1

16
d d sin d , ,j

s
2 0

2

0 0

4
ŵ ( )( ) (4.14)

j

j

, integer,

0, half-integer.
j 11  

 
⎧
⎨
⎩

= +
 (4.15)

In addition, they satisfy the following trace and orthogonality conditions:

ω =
⎧
⎨
⎩

j
j

Tr
1, integer,
0, half-integer,j

sw( )ˆ ( )
 
 

( ) (4.16)

Tr , ,j
s

j
s

j j j,w w( ˆ ( ) ˆ ( )) ( )( ) ( )ω ω δ δ ω ω=′ ′−
′ ′ (4.17)

where j j,δ ′ is the usual Kronecker symbol while ,j( )δ ω ω′  is the reproductive kernel

W Wd , .f
j

j j j f
j

,( ) ( ) ( )∫ ω ω δ ω ω δ ω=′ ′′
′

′
 (4.18)

that functions as an analog of the δ-function on the group. Here, d d sin d dω φ θ θ ψ=  is the 
SU(2) volume element.

It follows from equation (4.17) that the map (4.6) is explicitly invertible:

f
j

W
1

16
d ,j f

j s
j

s
2

wˆ ( ) ˆ ( ) ( ) ( )∫π ω ω ω=
+ − (4.19)

and thus establishes a one-to-one correspondence between the components f ĵ appearing in 
equation (4.19) and the symbols W f

j s ( ) ( ) ω  on the subspaces labeled by j.
For every fixed value of the discrete parameter j, the map of equation (4.6) is a function of 

three Euler angles and thus cannot be a representation of operators in a classical phase space, 
which by definition is even-dimensional. Nevertheless, in contrast with the standard SU(2) 
covariant Stratonovich–Weyl approach, the generalized map offers the possibility of recon-
structing, through equations (4.4) and (4.19), the whole operator rather than only its projection 
on irreducible subspaces.

We note that, when f̂  acts in a single SU(2) subspace, q 0=′  in equation (4.4), j is an inte-

ger and only square tensors T Kq
j j2 2ˆ / /

 enter in the map of equations (4.5) and (4.6). In this case 

we recover the standard Stratonovich kernel of equation (3.8) with S  =  j/2, where w ,S j
s

2ˆ ( )/
( ) θ φ= , 

is independent of the third angle ψ.
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The kernel wS
sˆ ( )( ) Ω  of equation (3.8) is simply related to the generalized kernel j

sŵ ( )( ) ω  of 
equation (4.8) by averaging over the angle ψ:

w
d

4
.S j

s
j
s

2
0

4
wˆ ( ) ˆ ( )/

( ) ( )∫
ψ
π

ωΩ =
π

= (4.20)

The physical significance of the phase ψ will be discussed in greater details later.
The overlap relation can be seen to take the form

f g
j

W WTr
1

16
d .

j
f
j s

g
j s

0, 1
2

,1
2

( ˆ ˆ) ( ) ( ) ( )  ( )∫∑ π
ω ω ω=

+

= …

∞
−

 (4.21)

The symbol of the identity operator 1 on the entire space is obviously

1( ) Z∑ω δ= = ∈

= …

∞ ∗⎧⎨
⎩W

j1 ,
0 otherwise

j

n
jn

0,1,2
 (4.22)

This implies the normalization condition

( ˆ ) ( )∫∑ π
ω=

+
Θ

= …

∞

f
j

WTr
1

16
d .

j
f
j

0,1,2,
2 (4.23)

An explicit differential form for the star-product acting directly on j-symbols,

W W WL ,fg
j s

j j
f g
j j j s

f
j s

g
j s

,
,
,

1 2

1 2 1 2( ) ( ( ) ( )) ( )  ( )  ( )  ( )∑ω ω ω= (4.24)

can be found in [73] and is reproduced in appendix C. It has a local form L f g
j j j s

j j j j,
,

, ,
1 2

1 2

 ( ) δ δ∼  and 
reduces to the standard product of equation (B.1) when the operators f̂  and ĝ are elements of 
the enveloping algebra of su(2).

The structure of the correspondence rules (Bopp operators) for the generalized ker-
nels is  not unexpectedly more involved than for the simple SU(2) mappings of equations  
(3.40)–(3.41): derivatives with respect to the angle ψ appear even for the description of the 
action of the angular momentum operators [100]. The asymptotic form of correspondence 
rules are most useful in practice.

4.3. Some examples

Broadly speaking the generalized symbols W f
j s ( ) ( ) ω  have more complicated form than their 

standard Stratonovich–Weyl expressions. In addition, not all of them have an intuitive inter-
pretation, as can be seen from equation  (4.29) below. Nevertheless, within the framework 
of this generalized formalism, one can find using equations  (4.5)–(4.9) images of operator 
that do not belong to the su(2) enveloping algebra. This becomes especially attractive in the 
semi-classical limit, when these symbols ‘become functions defined’ in a symplectic phase 
space. We emphasize that the index j can only take integer values for symbols independent of 
ψ. When there is no ψ dependence, the operators act exclusively within an SU(2) irreducible 
subspace, and are functions of the angular momentum operators.

For instance, the image of the total angular momentum operator J
2ˆ  is

W
j j

2 2
1

J
j s

n
j n,2 ( )( )

Z
⎜ ⎟
⎛
⎝

⎞
⎠ ∑ω δ= +
∈ +

 (4.25)

and independent of the parameter s.
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On the other hand, non-diagonal tensors constructed as per equation (4.2) which mix SU(2) 
irreps always depend on the angle ψ, both for integer and half-integer values of of the index j. 

For instance the operator ̂n coszˆ θ= , corresponding to the z-component of the unit vector of 
equation (3.15), has an expansion in terms in the non-squared tensors of (4.2) as

n
j

T T
1

2
,z

j

j j j j

1,3,5...
10

1
2

1
2

10

1
2

1
2ˆ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑=

+
−

=

+ − − +

 (4.26)

and can also be expanded in a coordinate basis as

n d sin d cos , , ,zˆ ⟩⟨∫ ϕ ϑ ϑ ϑ ϕ ϑ ϕ ϑ= | | (4.27)

Y j m, , , ,
j m j

j

jm
0,1,

⟩ ( ) ⟩∑ ∑ϕ ϑ ϕ ϑ| = |
= … =−

∗
 (4.28)

where ϕ and ϑ are angles in the configuration space. The j-symbol for nzˆ  is then obtained as

W
j

j 1
sin cos .n

j s
s

n
j n

2

0,1,..
,2 1z

( )( )
/⎛

⎝
⎜

⎞
⎠
⎟ ∑ω θ ψ δ=

+

−

=
+ (4.29)

The counter-intuitive form of this symbol will be discussed later.
Introducing the bi-polar spherical harmonics [93] Y Y, , Kq1 1 2 2{ ( ) ( )}ϕ ϑ ϕ ϑ⊗ ′� � , one may 

observe that for j Z∈ +, the kernel of (4.11) can be expressed for s  =  0 using the , ⟩ϕ ϑ|  basis as

0 d d , ,j
0

1 2 2 2 1 1ŵ ( )( ) ∫ ϕ ϑ ϕ ϑ= Ω Ω (4.30)

K

j
Y Y

2 1

1
1 , , .

K

j

q K

K j q

j q j q

Kq0

2
2

1 1
2

2 2( ) ( ) ( )
⎧
⎨
⎩

⎫
⎬
⎭∑ ∑ ϕ ϑ ϕ ϑ×

+
+

− ⊗
= =−

−
+ − (4.31)

This representation clearly reveals its the angular momentum coupling nature of the mapping 
kernel.

As another example consider the realization of angular momentum states JM⟩|  in terms of 
boson operators (the Schwinger representation):

〉 ( ˆ ) ( ˆ )
( ) ( )

〉 〉
† †

|
+ −

| |
+ −

�J M
a b

J M J M
,

! !
0 0

J M J M

 (4.32)

The boson annihilation operator â clearly connects JM⟩|  and J M ⟩| ′ ′ , where J J 1

2
= −′  and 

M M 1 2/= −′ . Using equation  (4.32) the Heisenberg–Weyl annihilation operator â can be 
expanded as

a
j j

T
1 2 3 2

2
,

j

j j

1
2

, 3
2

,
1 2 1 2

1
2

1 2 , 1
2

1 2
ˆ ( / )( / ) ˆ

/   /
( / ) ( / )

∑=
+ +

= …
−
− +

 (4.33)

and its symbol is given by

W
j j

j

1 2 3 2

1
cos

1

2
e ,a

j s
s

s
k

j k

1

1
i 2

1
2

, 3
2

,

,
( / ) ( / )

( )
 ( ) ( )/ ∑θ δ=

+ +
+

φ ψ
−

−
− +

= …

∞

 (4.34)
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showing that only half-integer values of j survive for this essentially ‘quantum’ operator. This 
should be contrasted with nzˆ , an operator that admits a classical interpretation.

An important application is to the product of two Heisenberg–Weyl coherent states

αβ α β=: ,
a b (4.35)

/ ∑γ
γ

= γ−

=

∞

n
ne

!
,

n

n
2

0,1,..

2

 (4.36)

This state is decomposable into a direct sum of the SU(2) coherent states S, ;0 0 ⟩θ φ|  equa-
tion (3.4) as

( )
〉/∑αβ θ φ= |ψ

= …

∞
− r

S
Se

2 !
e , ; ,

S

r
S

j

0, 1
2

,1,

2
2

i
0 0

2
0

 (4.37)

with the coherent state parameters α and β are given by

r rcos
1

2
e , sin

1

2
e .0

i 2
0

i 20 0 0 0( )/ ( )/⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠α θ β θ= =φ ψ φ ψ− + − (4.38)

The sum over S clearly points to the existence of non-diagonal elements in the SU(2) decom-
position of the density matrix ⟩⟨αβ αβ| |, so the standard map of equation  (3.8) cannot be 
used. Within the generalized approach one calculates that the j-Wigner symbols of the sate 
 equation (4.37) depend only on a single continuous parameter:

( )
( ) ( )

( )( )

{ }
∑ω χ ν=

+
+

+ + −αβ

−

=

W
r

j

K

j K j K

e

1

2 1

1 ! !
,j

j r

K

j
K0

2

0, 1
2

2

 (4.39)

where K( )χ ν  is the SU(2) group character

Ksin 2 1

sin
,K 2

2

( )
[( ) ]

χ ν =
+ ν

ν (4.40)

with the angle ν implicitly given by

ν θ θ φ φ ψ ψ

θ θ φ φ ψ ψ

= − − −

− + − −

cos cos cos cos

cos sin sin .

1

2

1

2 0
1

2 0
1

2 0

1

2 0
1

2 0
1

2 0

( ) ( ) ( )

( ) ( ) ( )
 

(4.41)

The corresponding Q-function also has a simple form:

( )( )
( ) ( )

( ) ( )∑ω θ=
+ −

′
′ ′

αβ
φ ψ− −

=−

+

′

′ ′ ′W r
j q j q

e cos
1

! !
e ,j r

j

q j

j
q1 1

2

2
2i2

 (4.42)

where the angles , ,(ω φ θ ψ=′ ′ ′ ′) are obtained as a composition 0ω ω�  of the Euler angles 0ω  
(4.38) and ω in the standard way [93].

4.4. Semiclassical limit

In the semi-classical limit, when typical values of the index j are sufficiently large, the exact 
expression of equation (4.24) for the star-product reduces to the elegant form
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W
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+ − − + + − − +

 
(4.43)

with

ie i cot
1

sin
, i .i 0J J

⎡
⎣⎢

⎤
⎦⎥θ

θ
ψ θ φ ψ

=
∂
∂
±

∂
∂

∂
∂

= −
∂
∂

ψ± ∓∓ (4.44)

More precisely, this semi-classical limit corresponds to situations where components with 
large values of j1 and j2 are the most important in the decomposition of the operators f̂  and ĝ 
given by equation (4.4). Since j J J1 1 1= + ′ and j J J2 2 2= + ′ , this occurs when J1′ and J1, and 
when J2′  and J2, are large in equation (4.3).

Operationally, the tensors appearing in the expansion of equation (4.4) should be predomi-
nantly of low rank. When the density matrices satisfies this criteria, it describes so-called 
semi-classical states. The semi-classical parameter j 1 1( )ε = + −  in this case is different in 
every sector labelled by the index j.

The approximate expression for the star-product given in equation (4.43) is considerably 
simplified in the limit where we consider j as a formal continuous parameter. Since symbols 
with integer and half-integer values of the index j behave in fundamentally different ways, the 
star-product takes a slightly different form in the continuous limit.

For integer j one can show that, to leading order in the semiclassical parameter, one obtains
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(4.45)

whereas, for the half-integer j case we have instead
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(4.46)

where P̂ is the Poisson bracket operator on 2S  given in equation (3.32). Both of these expression 
contain derivative w/r to the parameter j, which is now understood in this limit to be continuous.

The form of the star-product given above can be used to obtain the semi-classical evo-
lution equation for the j-symbols of the density matrix. Summing and extracting (4.45) and 
(4.46) one obtains the approximate Moyal equation (2.29) (to leading order in ε) for the linear 
combinations

W j W W, :s j s j s1 2( ) ( ) ( )( )  ( ) /  ( )ω ω ω= ±ρ ρ ρ
+

±
 (4.47)

in a form of [73] analogous to the standard TWA for the pure SU(2) case, given in equation 
(3.31)
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(4.48)

which we can represent as a Poisson bracket on a 4-dimensional manifold:

ω ω ω∂ ≈ρ ρ± ± ±
W j W j W j, 2 , , ,t

s
H
s s( ) { ( ) ( )}( ) ( ) ( )

 (4.49)

W j W j, ,
,

a b

ab H
s

a

s

b
, 1

4 ( ) ( )( ) ( )

∑ ω
ω

ξ

ω

ξ
=

∂

∂

∂

∂
ρ

=

± ± (4.50)

W j W j W j, : , , ,H
s

H
j s

H
j s1 2( ) ( ) ( )( )  ( ) /  ( )ω ω ω= ± +

± (4.51)

with j, , ,1 2 3 4ξ φ ξ θ ξ ψ ξ= = = = ; here, abω  are the components of a non-degenerate closed 
2-form ω̂:

j j1 d 1 cos d ,( ) ( )α ψ θ φ= + − + (4.52)

dω̂ α= − (4.53)

d j d jd 1 cos d 1 .(( ) ) ( )φ θ ψ= ∧ + + ∧ + (4.54)

The (continuous) index j thus emerges as a new dynamical variable conjugate to the angle ψ.
The canonical (Darboux) pairs j, 1 cos( ( ) )φ θ+  and j, 1( )ψ +  can be conveniently inter-

preted in terms of a rigid rotor motion [99]: the projection j 1 cos( ) θ+  of the angular momen-
tum j  +  1 on the fixed axis z produces a phase shift φ, while the precession of the phase ψ is 
generated by total angular moment j  +  1 in the body-fixed frame.

The 2-form ω̂ of equation  (4.54) defines a metric on the cotangent bundle T 2∗S  corre-
sponding to the co-adjoint orbit of the E(3) group fixed by the values of the Casimir opera-
tors R 12 =  and S R 0⋅ = , where the (commuting) generators of translations X Y ZR , ,( ˆ ˆ ˆ)=  
together with the components of the angular momentum operators S S SS , ,x y z( ˆ ˆ ˆ )=  close on 
e(3), the Euclidean algebra in three dimensions:

S S S X X S X X, i , , 0, , i .i j ijk k i j i j ijk k[ ˆ ˆ ] ˆ [ ˆ ˆ ] [ ˆ ˆ ] ˆε ε= = = (4.55)

The translations operators X X Yiˆ ˆ ˆ= ±±  and Ẑ act on the angular momentum basis functions 
by multiplying the spherical harmonics Y ,jm( )ϕ ϑ  by factors of sin e iϑ ϕ±  and cosϑ, respectively.

We note that W 0j s
S R( )( ) ω =⋅  while

( )( )
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= …
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⎪

⎪
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⎨
⎩

W
j

j

1 ,

0 , .
j s
R 1

2

3

2

2
 (4.56)

As a result of the explicitly covariant form of the kernel given in equation (4.31), the semi-
classical approach on T 2∗S  is very convenient to study the dynamics of spin–spin interactions 
invariant under global rotations. For instance, given the Wigner j-symbol of L N Sz z zˆ ˆ ˆ= +  and 
N Sˆ ˆ⋅  as

( )ω θ= +⎜ ⎟
⎛
⎝

⎞
⎠W

j j1

2 2 2
1 cos ,L

j
z (4.57)
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⎝

⎞
⎠

⎤
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⋅ (4.58)

the dynamics resulting from the Hamiltonian

H N S N S,z z
ˆ ˆˆ ( ˆ ˆ )κ χ= + + ⋅ (4.59)

is described by the following simple evolution equation in the T 2∗S  phase space:

W j W j j W j, , 2 1 , ,t ( ) ( ) ( ) ( )ω κ ω χ ω∂ = − ∂ − + ∂ρ φ ρ ψ ρ (4.60)

where no higher order derivatives appear. It follows from the solution of Equation (4.60)

ω φ κ θ ψ χ|− = − − + | =ρW j t W t j t j t, , , 2 1 , 0 ,( ) ( ( ) ) (4.61)

that the evolution of the angle ψ is different in each j-subspace and is an indicator of appear-
ance of spin–spin correlations; this therefore represents an alternative to other correlation 
measures such as purity or negativity.

The correspondence rules (Bopp operators) are also nicely simplified in the semi-classical 
limit j 1� : to 1( )O  one obtains [100]
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where the operators J̄± are defined slightly differently from the J± equation (C.4): here we have

J̄ θ
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∂
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±

± ∓
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On the other hand, for HW creation-annihilation operators we obtain,

W W
2

e cos 2 ,a
j s j si

2
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2( ) / ( )( ) ( )

ω
ε

θ ω≈ρ
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 (4.66)
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e cos 2 ,
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2
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2( ) / ( )( ) ( )

† ω
ε

θ ω≈ρ

φ ψ
ρ

+ −
 (4.67)

indicating that, to leading order, the action of generators of the Heisenberg–Weyl algebra is 
reduced to a change the value of the index j by 1/2.

5. Applications to kinematical problems

5.1. Quantum tomography

One of the simplest applications of the theory of quasi-distributions for spin-like systems is 
an explicit reconstruction scheme of the density matrix from measured probabilities (see e.g. 
[15, 86] and references therein). For fixed spin systems one has
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θ φ θ φ=
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Ω ρ
S

 (5.1)

where

Q S S S S, , , , ,( ) ⟨ ˆ( ) ⟩θ φ ρ θ φ= | |ρ (5.2)

D D, , , .ˆ( ) ˆ ( ) ˆ ˆ( )†ρ θ φ θ φ ρ θ φ= (5.3)

The quantities Q ,( )θ φρ  are frequently called tomograms.
As mentioned in connection with equation (2.23), a direct tomographic reconstruction of 

the SU(2) Wigner function

( ) ( ) ( )∫′
π

Ω =
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Ω Ω Ω Ω′ρ ρ
S
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S
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 (5.4)

∑ ζΩ Ω′ =
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L S

S
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0
cos ,S

L

S

L
0

2

( ) ( ) (5.5)

with PL(z) the Legendre polynomial and ζ defined in equation (3.19), can be more appropri-
ate especially for large values of the effective spin S (in which case the kernel ( )Ω Ω′K ,S  is 
a smooth function) and/or when the precise value of S is unknown (due—say—to a weak 
depend ence of the kernel equation (5.5) on the spin size when S 1� ) [101].

Tomographic schemes like the ones mentioned above are highly redundant and in practice 
are discretized. For instance, the density matrix of spin S system can be recovered by measur-
ing probabilities to obtain the maximum spin projection for (2S  +  1)2 appropriately chosen 
direction [102]. On the other hand, the coefficients Kqρ  of the multipole expansion (3.16), can 

be found from the moments n Ŝ⟨( ) ⟩⋅
�

, K1 ⩽ ⩽�  measured in suitable directions.
The SU(2) maps are widely used for the tomography of two polarization modes (H and 

V) within polarization sectors [76] constituted by states with fixed photon numbers and thus 
corresponding to SU(2) invariant subspaces. This kind of reconstruction of the polarization 
density matrix (in each subspace) can be efficiently performed in experiment [103] and the 
results can be conveniently represented as a distribution on the S2 sphere.

In the case of systems with variable spin or having a variable number of excitations, the 
reconstruction relation of equation (4.19) can be rewritten as [104]
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16
d ,
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j
j

0,1 2,1
2

1wˆ ( ) ˆ ( )
/

( )∫∑ρ
π

ω ω ω=
+
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= …
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 (5.6)

where ω ω ρ ω= =ρ
=−

Q W QTr 0j
j
s j1( ) ˆ ( ) ( ˆ( ) ˆ ( )), where T Tˆ( ) ˆ ( ) ˆ ˆ ( )†ρ ω ω ρ ω=  is the SU(2)-

transformed density matrix. In other words, the full density matrix can be reconstructed by 
measuring the expectation values of the operators (written in the angular momentum basis):

ˆ ( ) ( ) ( ) ( ) ( )∑= + + − −
=−

Q j q j q j q j q0 , , .
j

q j

j
1

2

1

2

1

2

1

2 (5.7)

on ˆ( )ρ ω .
One example of a variable spin system important in applications is the two polarization mode 

states (H and V), considered in the whole space, and not only inside individual polarization 
sectors. In this case the operator Q 0

jˆ ( ) takes the specific form (in the photon polarization basis)

J. Phys. A: Math. Theor. 50 (2017) 323001



Topical Review

28

Q j q j q0 0 0 ,
j

q j

j

HH VV
ˆ ( ) ∑= + − ⊗

=−
 (5.8)

with factorized states always containing the vacuum in one mode. Then, the data required 
for reconstruction of the complete state of an arbitrary two-mode polarized light field can be 
obtained from a conditional balanced homodyne tomographic setup [104].

5.2. Phase distribution problem

5.2.1. SU(2) relative phase POVM. The map (3.8) can be used to introduce a distribution 
function for the phase φ associated with the projection of the angular momentum on the z axis. 
In quantum optics, the phase φ is frequently related to the relative phase between polarization 
modes [105] defined in each polarization sector. Such an operator valued measure (POVM) 
can be defined [105, 106] by integrating over θ the kernel of the equation (3.8) for s  =  −1, 
corresponding to the Q-function

Ω = |Ω Ω |=−w S S; ; ,S
s 1ˆ ( ) 〉〈( ) (5.9)

where S; ⟩|Ω  is the SU(2) coherent state (3.4). The phase POVM

S
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is positively defined, Hermitian, normalized

, d ,S S S

0

2

1ˆ ( ) ˆ ( ) ˆ ( )
†
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π

 (5.11)

and satisfies the covariance condition,

e e .S
S

S
S

i i
0

z z0 0ˆ ( ) ˆ ( )ˆ ˆφ φ φ∆ = ∆ +φ φ− (5.12)

The resulting probability distribution

P Tr S( ) [ ˆ ( ) ˆ]φ φ ρ= ∆ (5.13)

can be used to evaluate averages of phase observables according to

f P fd .
0

2
( ˆ) ( ) ( )∫φ φ φ φ=

π
 (5.14)

Although in many situations the explicit form of (5.13) is quite complicated, the asymp-
totic for S 1�  frequently is notoriously simplified. For instance, for a coherent state (3.4) 

S;0 ⟩|Ω  one has

P
L

S
exp

2 1
, 0 ,

2

0 0( )
ˆ

( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟φ δ φ φ θ π≈ −

+
− < < (5.15)

where L
2ˆ  is the differential realization of the Casimir operator on 2S . For 00θ ≠  or π the opera-

tor L
2ˆ , when acting on 0( )δ φ φ− , is reduced to

L
1

sin
,

2

2
0

2
0

ˆ
θ

= − ∂φ (5.16)

while at 00θ =  or π (i.e. for highest and lowest states 〉| ±S S,  of the representation), it leads 
to a flat distribution: P 1 2( ) /φ π= . Then, for instance, for typical angle observables we obtain

J. Phys. A: Math. Theor. 50 (2017) 323001



Topical Review

29

L

S
cos exp

2 1
cos .k k

2

0

ˆ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟φ φ= −

+
 (5.17)

In the contraction limit described in equations (3.46)–(3.50), the POVM equation (5.10) is 
reduced to the phase distribution operator for the Heisenberg–Weyl group, which also allows 
to consistently define the phase operator itself [107].

5.2.2. Joint ψ φ−  POVM. The map of equations  (4.6)–(4.8) allows a generalization of the 
concept of phase distribution to systems with variable spin. The phase ψ in this case is formally 
one of the angle variables defining a point in j, , ,( )φ θ ψ  space. As discussed in  section 4.4 this 
phase also appears in the semi-classical limit as a variable conjugate to j, and thus can be inter-
preted as a phase shift generated by the total angular momentum rather than to its projection 
on a given fixed axis. Algebraically, the phase ψ carries information about coherences between 
sectors (labelled by j) of a density matrix. Thus, in the framework of the generalized SU(2) 
approach one can introduce a joint φ-ψ POVM in a way that generalizes equation (5.10):

j
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where j
1ŵ ( )( ) ω−  is defined in equation (4.8), and the positivity of (5.18) follows from (4.13). 

The operator ,ˆ ( )φ ψ∆  is normalized
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and covariant under Sẑ rotations,
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and S0
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 (5.22)

plays the role of the total photon number in the case of two-polarized field modes; S0
ˆ  also 

commutes with the angular momentum operators. Integration of ,ˆ ( )φ ψ∆  over ψ gives a direct 
sum of SU(2) phase POVM given in equation (5.10):

d , .
j

j
0

4

0,1,
2

ˆ ( ) ˆ ( )/∫ ∑ψ φ ψ φ∆ = ∆
π

= …

∞

 (5.23)

The average values are computed by using the joint probability distribution function 
P , Tr ,( ) [ ˆ ( ) ˆ]φ ψ φ ψ ρ= ∆  in the standard manner:

f g P f gd d , ,
0

2

0

4
( ˆ) ( ˆ) ( ) ( ) ( )∫ ∫φ ψ φ ψ φ ψ φ ψ=

π π
 (5.24)

and in general f g f g .( ˆ) ( ˆ) ( ˆ) ( ˆ)φ ψ φ ψ≠
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For the two-mode coherent state of equation (4.35), where in the parametrization of equa-
tion (4.38) the angle 0ψ  plays the role of ‘phase’ between SU(2) irreducible subspaces (4.37), 
the joint distribution function in the limit of large average photon number, α β| | + | | = �n 1,2 2 ¯  
has the asymptotic form,

P , e ,nJ 2
0 0

2( ) ( ) ( )/φ ψ δ φ φ δ ψ ψ≈ − −− (5.25)

where
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1
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2
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θ= − ∂ − ∂ ∂ +∂φ φ ψ ψ (5.26)

so that in particular,

cos e cos , cos e cos ,k n k k n kJ J2
0

2
0

2 2ˆ ˆ/ /φ φ ψ ψ≈ ≈− − (5.27)

have sharp maxima at 0ψ  and 0φ , while the correlation disappears for high intensity fields

O ncos cos e cos cos cos cos 1 .nJ 2
0 0

2ˆ ˆ ( ) ˆ ˆ ( / )/φ ψ φ ψ φ ψ≈ = +− (5.28)

Observables depending only on the phase ψ can be computed using a POVM obtained by 
integrating equation (5.18) over the phase φ,

d , ,
0

2ˆ ( ) ˆ ( )∫ψ φ φ ψ∆ = ∆
π

 (5.29)

which satisfies the covariance condition (5.21), but it is not invariant under the action of Sẑ. In 
the particular case of the state equation (4.37) one has

P Je ,
1

sin
.nJ 2

0
2

2
0

22

0
( ) ( )/ψ δ ψ ψ

θ
≈ − = − ∂ψ− (5.30)

6. Applications to semi-classical dynamics

In this section we present some examples of semi-classical dynamics using the Truncated 
Wigner Approximation for spin-like systems with fixed and variable values of spin. In general, 
the TWA is appropriate for description of dynamics of semi-classical states represented in 
phase space as smooth localized functions, the typical size of which is much less than char-
acteristic dimensions of the classical potential, and located in stable regions of the symbol of 
Hamiltonian. In addition, the TWA can also describe evolution of states located in unstable 
classical regions, although the time scale for the validity of this description is necessarily 
shorter than for the stable motion. This more limited validity is related to a comparatively 
larger sensitivity to small fluctuations leading to a faster deviation from classical trajectories.

The main effect captured by TWA is a deformation of the initial distribution, since different 
points in the distribution move with different velocities (with the exception of evolutions gen-
erated by Hamiltonians linear in the generators, for which the evolution of the state amounts 
to a rigid translation in phase space of the original function). Physical effects such as e.g. spin 
squeezing [108] which arise from this type of Hamiltonian are well described in the TWA and 
thus are purely classical in nature in the sense that all ‘quantumness’ of this effect is in the 
initial distribution rather than in the evolution.

The situation becomes more interesting for multipartite systems. Here, the semi-classical 
evolution occurs in a phase space which is a direct product of phase spaces of individual sub-
systems. The semi-classical evolution may then ‘entangle’ the interacting subsystems in the 
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sense that the initially independent distributions associated with different physical subsystems 
become strongly interrelated without affecting the purity of the initial state. In this case there 
may exists more than one semi-classical parameter.

The semi-classical time semτ  for which the TWA describes relatively well the quantum 
evolution of higher order correlation functions of spin observables, strongly depends both on 
the Hamiltonian and the initial state. In many physical applications the (dimensionless) semi-
classical time is semτ ε∼ λ− , 0 1⩽λ< , where ε is a semi-classical parameter. Interestingly, for 
some selected observables the time validity of the TWA can be significantly longer than the 
semi-classical time semτ . In the case of spin-variable systems the semi-classical parameter is 
usually taken as averaged over the sectors that have the largest contribution in the decomposi-
tion of the initial state.

The possibility of simulating the full quantum dynamics by semi-classical dynamics can 
be fruitfully applied for optimization purposes; for instance, to the determination of optimum 
values of the interaction constants needed to achieve the best squeezing or entanglement in 
spin-like systems.

Finally, we note that one important ingredient of the semiclassical approach is that the 
Wigner function of the physically relevant initial states (such as coherent states, squeezed 
states, etc) can be nicely approximated in the limit S 1�  using the asymptotic form of the 
mapping kernel given in equation (3.23). The asymptotic form of the kernel eliminates numer-
ical errors appearing in the computation of Clebsch–Gordan coefficients for representations 
of large dimensions.

6.1. Fixed S dynamics

Suppose the density matrix decomposes into SU(2)-invariant subspaces as in equation (2.20). 
Then, in each invariant subspace the semi-classical dynamics is governed by classical trajec-
tories on 2S :

( ) ( ( ) ( ) )θ φ θ φ| = − − | =ρ ρW t W t t t, , 0 , (6.1)

where t t,( ) ( )θ φ  are solutions of the classical Hamiltonian equations and W W, : ,0( ) ( )( )θ φ θ φ=ρ ρ .
The time scale semτ  for which TWA remains valid is heavily dependent on the highest 

degree of the polynomial in the su(2) generators entering in the Hamiltonian. For typical phys-
ical applications where interaction Hamiltonians are no more than quadratic in the generators 
and assuming the interaction constant χ of the highest degree operator is independent of the 
SU(2) irrep label S , the TWA usually fails before τ ∼ −Ssem

1 2/  and τ ∼ −Ssem
1 for stable and 

unstable regimes, respectively. Nevertheless, typical observables such as some average values 
and fluctuations of the spin operators, may evolve according to the semi-classical picture even 
up to times τ∼ 1 , where the quantum interference effects become predominant and in general 
cannot be neglected.

6.1.1. The finite Kerr-like interaction. The simplest non-trivial example is the Kerr-like 
Hamiltonian

H S .z
2ˆ ˆχ= (6.2)

The symbol of the Hamiltonian is given in table 1 as

( )θ φ θ∝W , cosH
2 (6.3)
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and leads to the following evolution of the Wigner function [57, 109, 110]:

θ φ
χ
ε

θΩ| = − | =ρ ρ⎜ ⎟
⎛
⎝

⎞
⎠W t W

t
t, cos 0 ,( )  

 (6.4)

i.e. parts of the initial distribution located at different values of θ precess with different angular 
velocities about the z axis.

If the initial state is the equatorial coherent state of (3.27), with 2, 00 0/θ π φ= = , so the 
phase space distribution is localized at the stable fixed point of W cosH

2( ) θΩ ∼ , the solution 
to equation (6.4) leads to a very good description of squeezing effect: the first and the second 
moments of the spin operators are described up to times t 1χ ∼ . By contrast, the evolution 
of arbitrary observables is usually well described by TWA, in this particular case, only up to 
times Ssem

1 2/�χτ − . For longer times, telltale signs of self-interference leading to Schrödinger 
cats on the sphere start to appear, as can be noticed for instance by analyzing the behaviour of 
the fourth moment m4(t) of the Wigner function using Equation (2.39).

6.1.2. The Meshkov–Lipkin interaction. The TWA is also applicable to the less trivial case of 
the Meshkov–Lipkin interaction [111]:

H S gS .z x
2ˆ ˆ ˆχ= + (6.5)

The semi-classical (i.e. large angular momentum) trajectories of this Hamiltonian have been 
by investigated by Bohr and Mottelson in the context of the nuclear cranking model [113].

The resulting symbol for the Hamiltonian is given by

W g
sin cos

2

cos

4
.H

2

2
( ) θ φ

ε
χ θ
ε

Ω = + (6.6)

This Hamiltonian can be seen to exhibit a second order phase transition for gε χ= .
When the initial state is a spin coherent state 2, 00 0/ ⟩θ π φ| = =  located at the minimum 

of WH( )Ω  given in equation (6.6), the corresponding truncated evolution equation leads to the 
standard equations for ( ,θ φ)

g sin ,tθ φ∂ = − (6.7)

g cot cos cos ,tφ θ φ
χ
ε

θ∂ = − + (6.8)

providing a good description of the time-dependence of the two first moments of the angu-
lar momentum operators below the phase-transition point g ⩽ε χ up to times t S�χ λ− , 

1 2/λ< . Above the phase-transition point, gε χ> , the same state 2, 0/ ⟩π|  is on the classical 
separatrix but the evolution of the first two moments is still sufficiently well approximated for 

t S , 1 2/�χ λ∼λ−  even in this unstable regime [112].
The deviation of the semi-classical evolution from the exact evolution of the fourth order 

moment m4 of equation (2.39) is quite different above and below the phase transition: below 
the transition, when g ⩽ε χ, the semi-classical approximation hold to Ssem

1 2/�χτ −  whereas 
above, when gε χ>  it holds to Ssem

1�χτ − .

6.1.3. Bi-partite systems. For bi-partite systems, when the Wigner distribution is defined on 
2 2×S S , the evolution along classical trajectories leads to inter-dependence of phase variables 

in the individual sub-manifolds, which results in a strong correlation between interacting sub-
systems. This effect can be observed even on the simplest example of bi-linear interaction
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H S S ,z z
1 2ˆ ˆ ˆ( ) ( )

χ= ⊗ (6.9)

which leads to the following evolution of the bi-partite Wigner function in the TWA [57]:

W t W
t t

t, ,
2

cos ; ,
2

cos 0 ,1 2 1 1
2

2 2 2
1

1( ) (     )θ φ
χ
ε

θ θ φ
χ
ε

θΩ Ω | = − − | =ρ ρ (6.10)

( )ε = + −S2 11,2 1,2
1 (6.11)

Equation (6.10) provides an excellent description of the purity dynamics P(t) of one of inter-
acting spins

( ) ( ) ( ) ( )∫ρ= ∼ Ω Ω Ω′ Ω Ω | Ω Ω′ |ρ ρP t W t W tTr d d d , , ,1
2

1 2 2 1 2 1 2 (6.12)

frequently used for the characterization of the spin–spin entanglement for pure states.
Since purity is not a physical observable, the limitations for its applicability are not the 

same as for moments of the angular momentum operators. In particular, the results of TWA 
basically coincide with exact quantum computations for large spins [57] for arbitrary times.

In situations where the spin–spin interaction is modified by the presence of a magnetic 
field, the interaction Hamiltonian has more complicated structure:

H S S g S S ,z z y y
1 2 1 2 1 2

1 1ˆ ˆ ˆ ( ˆ ˆ )
( ) ( ) ( ) ( ) ( ) ( )

χ= ⊗ + ⊗ + ⊗ (6.13)

and in particular reveals a phase transition at g2 ε χ= . The TWA describes well a short time 
evolution of bi-partite correlations even in the unstable regime and can be used for optim-
ization of spin–spin entanglement as a function of the parameter g/χ in the limit of large spins.

Finally, we add the TWA also describes the long-time dynamics of some other properties 
of multi-partite systems, such as the negativity [71], which characterizes spin–spin correla-
tions [112].

6.2. Variable spin dynamics

Following equations  (4.50)–(4.54), the semi-classical dynamics of a quantum system 
with variable spin—or alternatively systems for which the initial state contains non-neg-
ligible contributions from several large SU(2) subspaces—is defined by trajectories in 
the four-dimensional symplectic manifold T 2∗S . These trajectories can be different for 

W j W W,s j s j s1 2( ) ( ) ( )( )  ( ) /  ( )ω ω ω= ±ρ ρ ρ
+

±
. The computation of average values of operators 

containing only T KQ
ˆ ′��

 tensors for + =′� �  even in its decomposition (and in particular the 

square tensors describing operators from the su(2) enveloping algebra) is completed using 

W Wj j1

2
( ( ) ( ))ω ω+ρ ρ+ −

:

T j
j

d
1

16KQ
0 2

ˆ ∫ π
=

+∞′��
 (6.14)

W j
W t j t W t j t

d ,
, ,

2
,

T KQ
  ( )

( ( ) ( )) ( ( ) ( ))
∫ ω ω

ω ω
×

− − + − −ρ ρ+ −
′�� (6.15)

where t( )ω  and j(t) are classical trajectories on T 2∗S .
For the expectation values of non-squared tensors, for which + =′� �  odd, we need to use 

W W Wj j j1 2 1

2
( ) ( ( ) ( ))/ ω ω ω= −ρ ρ ρ

+
+ − :
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T j
j

d
1

16KQ
0 2

ˆ ∫ π
=

+∞′��
 (6.16)

W j
W t j t W t j t

d ,
, ,

2
,

T KQ
  ( )

( ( ) ( )) ( ( ) ( ))
∫ ω ω

ω ω
×

− − − − −ρ ρ+ −
′�� (6.17)

where n n1 2,/ Z− = + ∈′� � .
There are two basic physical situations for which the semi-classical picture on T 2∗S  is 

appropriate, depending if the expansion of the Hamiltonian contains only square tensors, or 
rectangular and square tensors.

6.2.1. Hamiltonian with square tensors only. If the decomposition of the Hamiltonian con-
tains only square tensors so Ĥ is block-diagonal, and if an exact or perturbative solution in 
each SU(2)-subspace is available, the whole evolution operator is recovered by summing over 
irreducible subspaces with coefficients from the initial state expansion.

On the other hand, the density matrix will typically contain contributions from multiple 
subspaces, its phase space image, in general, will contain non-square tensors coupled by the 
Hamiltonian: the evolution of the density matrix is not a simple sum of maps in each SU(2)-
irreducible subspace.

This is where decomposing in terms of j-sectors becomes particularly convenient: whereas 
various SU(2)-subspaces of Wρ may be mixed, different j-sector are NOT mixed under evo-
lution: when the Hamiltonian is block-diagonal and preserves irreducible SU(2)-subspaces the 
Wigner function evolves in each j-sector as

W t W t t t j, , , , ,j( ) ( ( ) ( ) ( ) )ω φ θ ψ θ φ| = − − + Ψ |ρ ρ (6.18)

where t t,( ) ( )θ φ  are classical trajectories on 2S  and the form of j t, ,( )θ φΨ |  depends on the 
Hamiltonian function.

For instance, it follows readily from equation  (4.25) that the total angular momentum, 
H J

2ˆ ˆω= , generates only rotations of the ψ-angle in the (integer) j-symbols,

( ) ( ( ) )ω φ θ ψ ω| = − + | =ρ ρW t W j t j t, , 1 , 0 .j (6.19)

As another example, consider the non-linear two-mode Hamiltonian

H a a b b
g

a b ab
2 2

,2 2ˆ (( ˆ ˆ) ( ˆ ˆ) ) ( ˆ ˆ ˆ ˆ )† † † †χ
= + + + (6.20)

that preserves the integral of motion N a a b bˆ ˆ ˆ ˆ ˆ† †= +  and can be recast, up to the constant 

operator N N J11

2

1

2

2ˆ ( ˆ ) ˆ+ ≡  representing the total angular momentum, in terms of the su(2) 

algebra generators in form of the Lipkin-Meshkov model given in equation (6.5), with

S a b ab S a a b b
1

2
,

1

2
.x z

ˆ ( ˆ ˆ ˆ ˆ ) ˆ ( ˆ ˆ ˆ ˆ)† † † †= + = − (6.21)

If the initial state belongs to a single SU(2) irrep, the approximation given in equation (6.1) 
can be applied in the limit of large average excitation numbers N⟨ ˆ ⟩.

For an arbitrary initial state, for instance the product of coherent states given in equa-
tion (4.35) which does not belong to a single SU(2) subspace, where at least one of the fields 
is in a strong coherent state, the evolution equation on T 2∗S  should be used. The angle ψ in the 
general solution (6.18) then evolves according to
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t j t g
2

3
1

cos

sin
d .

t

0
( ) ( ) ( )

( )∫ψ ψ χ
φ τ
θ τ

τ= + + + (6.22)

We should point out that it is not always convenient to use a map from a two-mode 
Hamiltonian into an su(2) form because of the complexity of computing the symbol of the 
Hamiltonian. For instance, a direct application of the generalized map of equations (4.6) and 
(4.8) and in particular of equation (4.34) is more appropriate in the case of the down-conver-
sion Hamiltonian,

H g a b b a .2 2ˆ ( ˆ ˆ ˆ ˆ )† †= + (6.23)

The j symbol of this Hamiltonian contains only half-integer j and for j 1�  simplifies to

( ) ( ) ( )/ω θ θ φ ψ≈ + +W j2 1 cos sin cos 3 ,H
j 3 2 2 1

2

1

2

1

2
 (6.24)

while the representation of (6.23) in terms of su(2) generators contains square roots and their 
Wigner symbols do not have simple expressions.

Solutions in the form equation (6.18) should be used for computation of averages of non-
squared operators, as for instance, a a,ˆ ˆ†  in case of equation (6.5) or (6.23).

6.2.2. Hamiltonians containing non-square tensors. Suppose the expansion of the Hamil-

tonian of the system contains non-square operators T KQ
ˆ ′��

, ≠ ′� � . A simple physical situation 

where this would occur consists e.g. in adding to an SU(2) invariant two-mode Hamiltonian a 
(non-invariant) pumping term ∼ a a( ˆ ˆ)†+ .

For this type of Hamiltonian the two-mode Heisenberg–Weyl TWA does not always lead to 
satisfactory results, especially when one of the non-linearly coupled field is initially in a vac-
uum state. This kind of system cannot be treated in terms of the standard Stratonovich–Weyl 
approach either, but is tractable in the formalism of generalized j-mappings [100].

As an example of this situation, we consider the Lipkin–Meshkov Hamiltonian of equa-
tion (6.20) in the presence of external pumping a a( ˆ ˆ)†µ + .

In this case, the evolution of both W j,( )ωρ+  and W j,( )ωρ−  are required. The evolution of 
W j,( )ωρ+  yields Hamilton equations defining classical trajectories on T 2∗S :

t
g

d

d
sin ,

θ
φ= − (6.25)

t
g j

d

d
cot cos 1 cos ,( )φ
θ φ χ θ= − + + (6.26)

t
g j

d

d

cos

sin

2

3
1 ,( )ψ φ

θ
χ= + + (6.27)

j

t
j

d

d
2 1 cos

1

2
sin

1

2
.( ) ( ( ))µ θ φ ψ= − + + (6.28)
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The first two equations are similar to (6.7) with j 11 →ε +−  but now contain an evolution of 
the index j.

The evolution of W j,( )ωρ−  is obtained with minimal effort by changing →µ µ−  in equa-
tion (6.28), with the other Hamilton equations remaining the same.

As in the single-S SU(2) case, the initial Wigner function can be well approximated in the 
limit j 1� . For instance, the Wigner function corresponding to the state r0⟩ ⟩α β| = | =  in the 
limit of a highly excited b-mode, r 12�  has the form

ω

ω ν

=

=

∈
ρ

ν

ρ
ν

− − −

+ − − −

+

⎫

⎬
⎪⎪

⎭
⎪⎪

W
j

r

W

j
2 e e ,

2e e cos ,

,

j j r r j

j j r r j

2
2 2 sin 1

2

1 2 2 2 sin 1
2

1

2

2 2 2 2

2 2 2 2

( )

( )

( ) / ( )

/ ( ) / ( )
Z (6.29)

where

ν θ φ ψ= −cos sin cos .1

2

1

2

1

2( )( ) (6.30)

6.3. The linear rigid rotor

The linear rigid rotor is an example of a system for which typical Hamiltonians contain non-
square tensors. This example deserves a separate treatment due to its importance in many 
applications, such as linear molecules in external fields.

To connect with Classical Mechanics, we need a change of coordinate so that the symmetry 
axis of the rotor (rather than the total angular momentum axis) is now the quantization axis. 
This is achieved by first applying a 2/π -rotation about the y-axis. Applying this rotation to the 
kernel of equation (4.11) yields

0 e 0 e .j
y S Si 2 i 2y yw wˆ ( ) ˆ ( )/ ˆ / ˆ= π π− (6.31)

The full kernel

T T0j
y

j
yw wˆ ( ) ( ) ˆ ( ) ( )†ω ω ω= (6.32)

leads to the standard classical picture [114]. This can be verified by noting for instance that, 
with this change of axis, the symbol of nzˆ  operator (4.27) has now an intuitive form

W jcos .n
j

n
j n

0,1,..
,

1
z
( ) ( )∑ω θ δ≈ +

=

−O (6.33)

This should be compared with the ‘unrotated’ expression of equation (4.29).
The Darboux coordinates become p ,( )θθ  and p ,( )φφ , where the conjugate momenta to 

coordinates θ and φ are

p j 1 sin ,( ) ψ= +θ (6.34)

p j 1 sin cos ,( ) θ ψ= +φ (6.35)

and p 0=ψ  always.
Using this scheme a simple semi-classical approach to linear rigid rotor evolution can be 

developed, as for instance, the alignment dynamics in an external field described by

H J n .z
2 2ˆ ˆ ˆκ= − (6.36)
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To leading order in 1/j, the j-symbol is just a classical Hamiltonian

W j
j j

,
2 2

1 cos ,H
j 2( ) ⎜ ⎟

⎛
⎝

⎞
⎠ω κ θ= + − (6.37)

where j takes only integer values. The truncated Wigner evolution for W j,( )ωρ  leads to the fol-
lowing evolution:

j 1 sin ,t ( )θ ψ∂ = − + (6.38)

j 1
cos

sin
,t ( )φ
ψ
θ

∂ = − + (6.39)

j
j

1 cot cos
4 cos sin cos

1
t ( )ψ θ ψ

κ θ θ ψ
∂ = − + +

+
 (6.40)

j 4 cos sin sin ,t κ θ θ ψ∂ = (6.41)

which are equivalent to the standard Hamilton equations for the canonical variables p ,( )θθ  and 
p ,( )φφ  and describe well the alignment dynamics for times t 1κ ∼ . Alternative phase space-

like approaches were developed in [115].

6.4. Dissipation

As a final application we consider the semi-classical dynamics of dissipative systems, gov-
erned by the Lindblad equation:

H Li , ,t
j

j jˆ [ ˆ ˆ] ˆ ( ˆ)∑ρ ρ γ ρ∂ = − + (6.42)

where Ljˆ  is a Lindblad superoperator.
Phase space methods allow the rewriting (sometimes exactly as for HW symmetry, or to 

some approximation in the SU(2) case) of the Lindblad equation in the form of a diffusion 
equation, thus helping the analysis of physical effects using the intuitive language of classical 
mechanics [116, 117].

In the semi-classical limit of the TWA, the Schrödinger equation is mapped to the classi-
cal Hamiltonian equation (in the sense that the image of the commutator is the appropriate 
Poisson brackets), so that zeroth order terms in a semi-classical parameter appearing in the 
expansion of the star-product of equations (3.28), (4.45) and (4.46) (or of the correspondence 
rules of equations (3.40), (3.41), (4.62)–(4.64)) cancel out.

As a result of this cancellation, the star-product is not formally required in order to obtain 
the evolution equation in the semi-classical limit within the framework of the standard clas-
sical phase space approach. To represent the action of the superoperators Ljˆ  in phase space, 
both zeroth and first order terms in the semi-classical expansions (3.40), (3.41), (4.62)–(4.64) 
are needed.

The dissipative phase-space dynamics of spins were studied quite intensively using 
mainly the P- and Q-symbols. The Wigner map is sometimes more convenient for physi-
cal analysis [118]; the evolution equation takes a slightly different form than for the P- and 
Q-representations. Here, we provide a few equations  appearing in typical spin relaxation 
problems.
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6.4.1. Single spin systems. When the system is in equilibrium with a thermal bath at temper-
ature T and limited to a single value of S, the dissipative terms are given by

L S S S S S S
g

2 ,
1

2
,1 1 1

ˆ ( ˆ) ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ( )
ρ γ ρ ρ ρ γ

ν
= − − =

+
− + + − + − (6.43)

where kTexp 10
1ħ[ ( / ) ]ν ω= − −  and

L S S S S S S
g

2 ,
2

,2 2 2
ˆ ( ˆ) ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )ρ γ ρ ρ ρ γ

ν
= − − =+ − − + − + (6.44)

with g a system-bath effective coupling. The Lindblad equation  (6.42) was discussed in 
the framework of the SU(2) phase-space approach in numerous papers (see for instance 
[41] [117] [118] and references therein). The evolution equation for the Wigner function 
is obtained by using the semi-classical expansion of the correspondence rules for the su(2) 
generators:

L 2 cos sin1,2
2

2

2
1ˆ ( ˆ) → ( )

⎡
⎣⎢

ρ
φ

ε θ θ− −
∂
∂

+ ∂θ−∓L (6.45)

W
2

2 1 cos
3

2

2 1

4
sin .2

2

( ) ( )
⎛

⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠
⎟
⎤

⎦
⎥
⎥

ε
θ θ± + + +

+
∂ Ωθ ρL

L
 (6.46)

with L is given in equation (3.34).
A contribution from a dispersion-like decoherence

L S S S S
2

2d
d

z z z z
2 2ˆ ( ˆ) ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ )ρ

γ
ρ ρ ρ= − − (6.47)

takes the form of a phase-diffusion differential operator:

L
W

.d

2

2
ˆ ( ˆ) →

( )
ρ

φ
∂ Ω

∂
ρ

 (6.48)

In the high temperature limit where 1ν� , we find the simplified expression for the super-
operator image in the phase space:

ρ
ν

ρ
ν

φ
+ − +

∂
∂

Ωρ�
⎛
⎝
⎜

⎞
⎠
⎟L L L W

2 2
.1 2

2
2

2
ˆ( ˆ) ( ˆ ˆ )( ˆ) → ( )L (6.49)

6.4.2. Multiple S values. In this case a contribution from the S0
ˆ  operator, defined in equa-

tion (5.22) and such that S S 12
0 0

ˆ ( ˆ )= +L  may arise in order to describe a decoherence between 
different invariant subspaces. This effect appears in the description of depolarizing channel in 
two-mode system:

L S S S S
2

2 .s 0 0 0
2

0
2ˆ ( ˆ) ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ )ρ ρ ρ ρ=

Γ
− − (6.50)

In this case the phase space dynamics is described by

L
W j,

.s

2

2
ˆ ( ˆ) →

( )
ρ

ω
ψ

∂

∂
ρ

 (6.51)
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7. Generalizations: SU(n) mappings

7.1. The general case

The formalism of Stratonovich–Weyl maps can be fairly easily generalized to some systems 
with SU(n) dynamical symmetry. A straightforward construction of an s-parametrized w sˆ ( )( ) Ω  
mapping kernel for systems with SU(n) symmetry group was proposed in [32] and contains 
certain ambiguities. An accurate deduction of such kernel for symmetric representations of 
SU(n) has been done in [23] (see also [81, 122]).

Denote by H the Hilbert space of a quantum system. Suppose a compact Lie group G, 
which we take to be SU(n) acts irreducibly on H so that H carries the irrep λ of G. Elements 
ω∈G act linearly in H via the matrix representation T ( )ω .

Let H be the largest subgroup of SU(n) that leaves ; h.w.⟩λ|  invariant (to within a phase), 
and the phase space for the corresponding classical system is isomorphic to the coset 

SU n( )/M H=  [83], so that SU(n) acts on M by canonical transformations.
Operators acting in H will transform according to the irrep λ λ⊗ ∗, where λ∗ the irrep con-

jugate to λ.
The product λ λ⊗ ∗ is reducible so, in addition to the labeling of states in irrep λ, we must 

consider the labeling of tensors from a general irrep , , ..., n1 2 1( )σ σ σ σ= − . In general, a weight 
α in irrep σ may occur multiple times; the label Iα distinguishes between multiple occurrences 
of this weight.

Ambiguities occur when the irrep σ occurs more than once in the decomposition λ λ⊗ ∗, 
and how to proceed in such cases remains an open question [23].

Assuming σ is not repeated in the decomposition λ λ⊗ ∗, a tensor T I;
ˆ
γσ
λ

γ
 is given 

explicitly by

T I I C; ; ,I
I I

I I
I

; ;
ˆ ⟩⟨ ˜∑ α βλ λ= | |γ α β

γ
σ
λ

α β
α β λ λ

σ
γ

α β

α β

γ
∗∗ (7.1)

where λ∗ the irrep conjugate to λ, β∗ the weight conjugate to β, and σ an irrep in the decom-
position of λ λ⊗ ∗.

The coefficients C I I
I

;
˜
α β
γ
λ λ
σ

α β

γ
∗ ∗  satisfy the orthogonality relation

C C
I I

I I
I

I I
I

I I; ;( ˜ ) ˜∑ δ δ δ=α β
ν

α β
ν

νν
α β

λ λ
σ

λ λ
σ

σσ
∗

′
′

′ ′
′ ′

α β

α β
ν

α β

ν
ν ν

∗ ∗ ∗ ∗ (7.2)

and are elements of a unitary matrix. The irreducible tensors of equation (7.1) satisfy

h T T, .i I i I; ;[ ˆ ˆ ] ˆα=α ασ
λ

σ
λ

α α
 (7.3)

which implies the tensors are trace orthogonal over ,ασ  and Iα:

T TTr .I I I I; ;[( ˆ ) ˆ ] δ δ δ=α ασ
λ

σ
λ

σσ αα
∗

′ ′′ ′ ′ ′ ′ ′α α
α α

 (7.4)

For SU n( ) irreps of the type , 0, , 0( )λ … , basis states will be written ; ⟩νλ| , where the ith 
component of the weight , , n1 1[ ]ν ν ν= … −  is the eigenvalue of the ith Cartan element on the 
state:

h ; ; .i i
ˆ ⟩ ⟩ν νλ ν λ| = | (7.5)
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For these irreps there is no weight multiplicity and the additional label I is not necessary. 
Moreover, an irrep σ occurs at most once in λ λ⊗ ∗, where 0, ,( )λ λ= …∗ . Thus, for instance:

⊕λ λ σ σ⊗ = σ
λ
= SU, 0 0, , for 3 ,0( ) ( ) ( )   ( ) (7.6)

SU, 0, 0 0, 0, , 0, for 4 , etc.0( ) ( ) ( )   ( )⊕λ λ σ σ⊗ = σ
λ
= (7.7)

The highest weight vector of , 0, , 0( )λ …  is U n 1( )−  invariant; this subgroup acts only on the 
last n  −  2 components of a weight. The kernel is then of the form

w F D T ,s s

I
I I0; 0 ;ˆ ( ) ( ) ˆ( ) ( )∑ ∑Ω = Ω

β
β βλ

σ
σ

σ
σ
λ

β

β β (7.8)

with

D I T 0; ; 0 , ,I 0; 0( ) ⟨ ( ) ⟩ Mβσ σΩ ≡ | Ω | Ω∈β
σ

ββ (7.9)

an SU n( ) group function for the irrep , 0, , 0,( )σ σ σ≡ …  [119], and

F C
dim

dim
.s

s
s0

1 2

h.w.; h.w.
0( )

( )
( ˜ )( )

( )/⎡
⎣⎢

⎤
⎦⎥

σ
λ

=σ λ λ
σ

+
−

∗ ∗ (7.10)

Here, the notation 00 is meant to imply that the state 0; 0⟩σ|  has zero-weight and is a scalar 
(invariant) under U(n  −  1) transformations.

7.2. The case of SU 3( ) irreps of the type λ, 0( )

For the simplest non-trivial example of the SU(3) group, the general equations (7.8)–(7.10) 
can be further developed. We follow [119] for the labeling and construction of basis states for 
an irrep ,( )λ µ . Defining

C a a a a ,ij i j i j1 1 2 2
ˆ † † † †= + (7.11)

the Lie algebra su(3) is spanned by the six ladder operators C i j, 1, 2, 3ij{ ˆ }≠ =  together with 
the two diagonal Cartan elements

h C C C h C C2 , .1 11 22 33 2 22 33
ˆ ˆ ˆ ˆ ˆ ˆ ˆ= − − = − (7.12)

The root diagram is given in figure 2. Basis states are then given by

∑

λ µ ν ν ν

ν ν ν λ

λ
ν ν ν

|

= | | |

I

m m

I

N

I

N m
m m m

,

; ; ,
m m m N

1 2 3

1

2 3

3

1

2 2

2

1

2 1

1

1

2
1

2

1

2 1 1
1

2 2 2
1

2 3 3

1 2 3

( )( ) 〉

〉 〉 〉
( )

 (7.13)

〉
( ˆ ) ( ˆ )
( ) ( )

〉
† †

| =
+ −

|
+ −

s m
a a

s m s m! !
0 .i i

i
s m

i
s m

i i i i

1 2
i i i i

 (7.14)

with ;j

m

j

m

J

M
1

1

2

2
 an SU(2) Clebsch–Gordan coefficient.

The weight ,1 2 2 3[ ]ν ν ν ν ν≡ − −  of the state is extracted from a triple 1 2 3( )ν ν ν  of non-nega-
tive integers constrained by 21 2 3ν ν ν λ µ+ + = + . The label kν  is seen, from equations (7.13) 
and (7.14), to be the total number of quanta in mode k of a 3-dimensional oscillator with two 
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internal degrees of freedom. The states of equation (7.13) transform as angular momentum 
I states under the su(2) subalgebra spanned by C23

ˆ , C32
ˆ  and h2

ˆ .
In general, states satisfy

ˆ ( )( ) 〉 ( ˆ ˆ ˆ ) ( )( ) 〉
( ) ( )( ) 〉

λ µ ν ν ν λ µ ν ν ν
ν ν ν λ µ ν ν ν

| = − − |
= − − |

h I C C C I

I

, 2 , ,

2 , ,
1 1 2 3 11 22 33 1 2 3

1 2 3 1 2 3 (7.15)

λ µ ν ν ν λ µ ν ν ν
ν ν λ µ ν ν ν

| = − |
= − |

h I C C I

I

, , ,

, .
2 1 2 3 22 33 1 2 3

2 3 1 2 3

ˆ ( )( ) 〉 ( ˆ ˆ ) ( )( ) 〉
( ) ( )( ) 〉 (7.16)

Since the irrep , 0( )λ  does not have weight multiplicities, i.e. each weight ν occurs at most 
once, the multiplicity label I for states of this irrep is redundant and often not indicated. In this 
special case the basis states are simply

a a a
I, 0

! ! !
0 ,

1

2
.1 2 3

11 21 31

1 2 3
2 3

1 2 3

( ) ⟩
( ˆ ) ( ˆ ) ( ˆ )

⟩ ( )
† † †

λ ν ν ν
ν ν ν

ν ν| = | = +
ν ν ν

 (7.17)

The highest weight is , 0 00( ) ⟩λ λ|  and invariant under U23 transformations of the form 
R e h

23
i 1 1( ) ˆω γ− . Hence the coherent states have the form

T; , 0 00 ,⟩ ( ) ( ) ⟩λ λ λ|Ω = Ω | (7.18)

where : , , ,1 1 2 2( )α β α βΩ =  is in the coset �SU U3 223
2( )/ ( ) CP  and T ( )Ω  is the coset 

transformation

T R R: , , , , .23 1 1 1 12 2 2 2( ) ( ) ( )α β α α β αΩ = − − (7.19)

Here, R , ,ij( )η θ ϕ  are transformations of the SU(2) subgroup with subalgebra spanned by 

C C C C, , ,ij ji ij ji
1

2
ˆ ˆ [ ˆ ˆ ], and with parameter range 0 , 21 2⩽ ⩽α α π, 0 ,1 2⩽ ⩽β β π.

As the transformations of equation  (7.19) are products of SU(2) transformations (albeit 
from different subgroups), the coset functions - they are group function in irreps of the type 

,( )σ σ  as per equation (7.6)— are a sum of products of SU(2) Dmm
J
′ functions [119]:

( ) 〈( ) ( ) ( ) ( )( ) 〉

( ) ( )

( ) ( ) ( )
( )

( )
( )

( ) ( )

∑

νσ σ α β α α β α σ σ σσσ

α β α

σ

σ σ ν

ν σ
α β α

Ω = | − − |

= − + −

× −
+
+

−
−

ν σσσ
σ σ

σ
ν ν σ ν

σ

− −

=| |

�

��

� �
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

D I R R

I D

I
D

, , , , , , 0

1 2 1 , ,

1
2 1

1

2
, , ,

I

I

M
M

; 0
,

23 1 1 1 12 2 2 2

1
2

, 1
2

1 1 1

1

2

1

2 1

1

2 1
1

2

,0 2 2 2

2 3 1

 

(7.20)

Figure 2. The root diagram for the complexification of su(3).
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with M 1ν σ= −  and 
a b c
d e f

⎧⎨
⎩

⎫⎬
⎭ an su(2) 6j-symbol [119]. The measure dΩ on the coset and 

the range of integration of the parameters are given by

∫ ∫ ∫ ∫ ∫α α β β
β β

βΩ =
−π π π π

d d d sin d
d 1 cos

4
sin .

0

2

2
0

2

1
0

1 1
0

2 2
2 (7.21)

The SU(3) tensor operators are constructed using SU(3) Clebsch–Gordan coefficients for 
the coupling , 0 0, ,( ) ( ) → ( )λ λ σ σ⊗ . Indeed we find

∑ λ α α α λ β β β

λ
α α α

λ
λ β λ β λ β

σ σ
ν ν ν

= | |

×
− − −

−

αβ
ν ν ν
σ σ

λ β−

T

J

, 0 , 0

, 0
;

0,

, ,

,

;
1

J;
,

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3

2

ˆ ( ) 〉〈( )

( ) ( ) ( ) ( )

( )

 (7.22)

where the SU(3) Clebsch–Gordan coefficient can be factored in the usual way as

J

, 0
;

0,

, ,

,

;1 2 3 1 2 3 1 2 3

( ) ( ) ( )λ
α α α

λ
λ β λ β λ β

σ σ
ν ν ν− − −

 (7.23)

( ) ( ) ( ) ( )

( ) ( ) ( )
λ
α

λ
λ β

σ σ
ν

α α

α α

β

β β ν ν
=

−

+

− − −J

J, 0
;

0, ,

;
; .

1 1 1

1

2 2 3

1

2 2 3

1

2 1

1

2 3 2
1

2 2 3

 

(7.24)

The coefficient λ
α

λ
λ β

σ σ
ν−

;
J

, 0 0, ,

;1 1 1

( ) ( ) ( )  is the reduced SU(3) CG, an expression for which is given 

in equation (D.1) of the appendix.

Since dim , 0 1 21

2
( ) ( )( )λ λ λ= + +  and dim , 1 3( ) ( )σ σ σ= +  the factor F s( )

σ  of equa-

tion (7.10) specializes to:

F 1
, 0

00
;

0,

0

,

; 0

2 1

1 2
,s

s s3 1 2

( ) ( ) ( ) ( ) ( )
( )( )

( )
( )/⎛

⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟λ

λ
λ
λλ

σ σ
σσσ

σ
λ λ

= −
+

+ +σ
λ

− +

 (7.25)

λ
σ

λ σ λ σ
σ

λ λ
= −

+
+ + −

+
+ +

λ

− +⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜

⎞
⎠
⎟1 !

2 1

2 ! !

2 1

1 2
,

s s3 3 1 2

  ( ) ( )
( ) ( )

( )
( )( )

( )/

 (7.26)

where we have used the expression for ( ) ( ) ( )λ
λ

λ σ σ
σ

;, 0 0,

0

,

; 0
 given in equation  (D.9) of the 

appendix.
These expressions allow a complete construction of the kernel w sˆ ( )( ) Ωλ  of equation (7.8). 

The Wigner-type symbols, s  =  0, of some of the su(3) generators are provided in table 2.
Average values are computed in the usual manner

A W W
1 2

8
d .A2

⟨ ˆ⟩ ( )( ) ( ) ( )∫
λ λ

π
=

+ +
Ω Ω Ωρ (7.27)

Combining the expressions of equations (7.26) and (7.22) for F 0( )
σ  and T 0; 0

ˆ
σ
λ

, the Wigner 
kernel at 0Ω =  takes the form
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w F T0 ,0
0

0

0
; 0ˆ ( ) ˆ( ) ( )∑=λ

σ

λ

σ σ
λ

=
 (7.28)

n n n n n n, 0 , 0 1 ,
n n n

n n n
n

1 2 3 1 2 3

1 2 3

1 2 3
1( ) ⟩⟨( ) ( )∑ λ λ= | | −

λ

λ

+ + =

C (7.29)

where n n n1 2 3 λ+ + = . On the other hand, for s  =  −1, the kernel at the origin simplifies to 
the expected form

ˆ ( ) ˆ ( ) 〉〈( )( ) ( )∑ λ λ λ λ= = | |λ
σ

σ σ
λ− −w F T0 , 0 00 , 0 00 .0

1 1
0 (7.30)

In the limit 1λ� , the coefficient n n n1 2 3

λC  can be approximated [23] as:

n

n n

0 if 3,

2
6

if 3,n n n

1

1 1
1 2 3

  /

  /

⎧
⎨
⎪

⎩⎪

λ

λ
λ

<

− + >
λ �C (7.31)

in a manner reminiscent of the asymptotic form of the SU(2) kernel at the origin given in 
equation (3.23).

Again in the 1λ�  regime, the Wigner symbol for the highest weight state , 0 00( ) ⟩λ λ|  is 
well approximated by

W Ae ,cos 12( ) ( )Ω ≈ρ
λ β − (7.32)

where A is a normalization constant chosen so that

W
1 2

8
d 1

2

( )( ) ( )∫
λ λ

π
+ +

Ω Ω =ρ (7.33)

7.3. Some applications

An interesting application the general formalism presented in equations (7.8)–(7.10) is to the 
quantum tomography of systems with SU(n) symmetry. This can be done by a formal applica-
tion of the reconstruction formula of equation (2.21). Several proposal for the implementa-
tion of such protocols were discussed in [123–125], where additional delicate situations were 
analyzed. The reduction to the form equation  (2.23) is also possible, although the general 
expression becomes quite cumbersome.

Another direct application is the problem of SU(3) relative phase POVM, similar to the 
corresponding SU(2) case considered in section 5.2.1. The POVM for two relative phases 1α  
and 2α  can be obtained by integrating the kernel w 1ˆ ( )( ) Ωλ

−  over ,1 2β β :

ˆ ( ) (( )) ˆ ( )( )∫ ∫α α
λ
π

β β
β β

β∆ =
−

Ω
π π

λ
−w,

dim , 0

4
sin d

d 1 cos

4
sin ,1 2 2 0

1 1
0

2 2
2

1 (7.34)

where the normalization factor is chosen so that

d d , .
0

2

1
0

2

2 1 2 1ˆ ( )∫ ∫α α α α∆ =
π π

 (7.35)

Under shifts generated by the action of the Cartan operators the POVM equation  (7.34) is 
transformed to
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e e , e e 2 , 3 ,h h h hi i
1 2

i i
1 2 2 1 2

1 1 2 2 1 1 2 2ˆ ( ) ˆ ( )ˆ ˆ ˆ ˆα α α γ α γ γ∆ = ∆ + + −γ γ γ γ− − (7.36)

as expected [120].
In the particular case of a single SU(3) system, corresponding to irrep (1,0) the kernel has 

the form

β
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β β
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 (7.37)
so that, following equation (7.34), a single-particle ‘phase distribution operator’ becomes

,
1
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0 e e
e 0 e
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+
 (7.38)

With the identifications 22 1 2↔ ( )α ϕ ϕ− , 1 1 2↔α ϕ ϕ− + , the off-diagonal relative phases 
coincide with the polar part of a coherent state realization of su(3) on the torus constructed in 
[121]. For an arbitrary (coherent) state of the form

B

B B
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+

 (7.39)

this leads to the following phase distribution function P , Tr ,1 2 1 2( ) ( ˆ ( ) ˆ)α α α α ρ= ∆

Table 2. Elements of the su(3) and their symbols.

Operator Â W A
0 ( )( ) Ω

h1̂ = D2 3 111 0; 111 0
1,1( ) ( )( ) ( )

( )λ λ+ Ω

= 1 3 cos3

8
2( ( ))( ) β+λ λ+

h2
ˆ = D2 3

3 111 1; 111 0
1,1 ( )( )

( ) ( )
( )− Ωλ λ+

= cos sin3

2
1

2 1

2 2( )( ) β βλ λ+

C C12 21
ˆ ˆ+ = D D2 3

3 201 1 2; 111 0
1,1

021 1 2; 111 0
1,1( ( ) ( ))( )

( ) / ( )
( )

( ) / ( )
( )− Ω + Ωλ λ+

= 3 cos cos sin2
1

2 1 2( ) ( ) ( ) ( )λ λ α β β+

C Ci 12 21( ˆ ˆ )− − = D Di 2 3

3 201 1 2; 111 0
1,1

021 1 2; 111 0
1,1( ( ) ( ))( )

( ) / ( )
( )

( ) / ( )
( )Ω + Ωλ λ+

= 3 sin cos sin2
1

2 1 2( )( ) ( ) ( )λ λ α β β+

C C13 31
ˆ ˆ+ = 3 cos sin sin1 2

1

2 1 2( ) ( ) ( ) ( )λ λ α α β β+ +  ,

C Ci 13 31( ˆ ˆ )− − = 3 sin sin sin1 2
1

2 1 2( ) ( ) ( ) ( )λ λ α α β β− + +  ,
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(7.40)

7.4. SU(3) dynamics

7.4.1. Poisson bracket on SU U3 2 2( )/ ( ) CP� . Following the general scheme presented in 
equations  (2.28)–(2.32) the semi-classical dynamics of quantum systems with SU(3) sym-
metry group is developed on �SU U3 2 2( )/ ( ) CP , where the local coordinates are determined 
by the coset parametrization of equation (7.19) as , , ,1 1 2 2( )α β α βΩ = , and the semi-classical 
 param eter is

1

2 3
.

( )
ε

λ λ
=

+ (7.41)

One then obtains the Poisson bracket in the form [82]

,
4

sin sin1
2 1

2 2
1 1 1 1{ } ( )

β β
⋅ ⋅ = ∂ ⊗ ∂ −∂ ⊗∂α β β α (7.42)

2 tan

sin

1

2 1

2 1

2 2
2 1 1 2( )

β

β
− ∂ ⊗∂ −∂ ⊗∂α β β α (7.43)

4

sin
.

2
2 2 2 2( )

β
+ ∂ ⊗∂ −∂ ⊗∂α β β α (7.44)

Although the SU(3) Wigner functions are not so conveniently illustrated on 2CP , the most 
important features of the evolution can be captured by analysis of physically meaningful lim-
its in which some semiclassical trajectories can be obtained either analytically or numerically 
in the TWA scheme. In addition, additional insights can be gained by plotting projections of 
the Wigner function on some selected submanifolds [80, 82].

7.4.2. Application: two types of SU(3) squeezing. The simplest dynamical application of 
the SU(n) phase space approach is the analysis of squeezing, i.e. the possibility of reduc-
ing quant um fluctuations of given observables in multi-level systems below some commonly 
accepted threshold. It can be shown [82] that an hierarchy of different types of squeezings can 
be established, caused by dynamically induced correlations between substructures in the spec-
trum of the system. Analysis of these effects can be performed completely in the framework 
of the SU(n) TWA.

The simplest SU(3) Hamiltonians that lead to a deformation of an initial distribution result-

ing in squeezing are of the form H h1 1
2ˆ ˆ∼ + linear terms and H h2 2

2ˆ ˆ∼ + linear terms, where h1̂ 
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and h2
ˆ  are given in equations (7.15) and (7.16). The the linear terms are added for conveni-

ence, to remove rigid rotations of the distribution in the phase space.
The effect produced by these Hamiltonians is substantially different:

a) The Hamiltonian

H h h
2 3

60
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2
1ˆ ˆ ˆ⎜ ⎟

⎛
⎝

⎞
⎠

λ
= +

+
 (7.45)
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generates evolution of the angles 1α  and 2α
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2
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⎡
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⎛
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⎞
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⎤
⎦⎥α α λ λ β β= − − + − (7.48)

in a very similar way as the Hamiltonian H Sz
2ˆ ˆ∼  leads to the phase φ dynamics in case of 

SU(2) symmetry, as shown in equation (6.4). This is especially noticeable from how the sym-

bol W cos sinh 1
2 1

2 22 ( )β β∼  appears in equations (7.47)–(7.48). Since h2
ˆ  is the Cartan element 

proportional to the operator Sz of the su23(2) subalgebra equation (7.17), h2
2ˆ  produces SU(2)-

like correlations in each SU23(2) subrepresentation contained in the original , 0( )λ  irrep. As 
a result, the optimal squeezing time and the maximum achievable squeezing scale with λ 
 practically in the same way as they scale with S in spin systems [82].
b) The Hamiltonian

H h h h C C C
2 3

5
, 2 .1

2
1 1 11 22 33ˆ ˆ ˆ ˆ ˆ ˆ ˆ⎜ ⎟

⎛
⎝

⎞
⎠

λ
= −

+
= − − (7.49)

with symbol

W
9

40
1 3 4 3 4 cos 5 cos 2 ,H 2 2( ) ( )( ) ( ( ))λ λ λ λ β β= − + + + + (7.50)

produces, in contradistinction to equation (7.45), correlations between SU(2) subspaces but no 
correlations inside the subspaces, as h1̂ acts diagonally on SU(2) states. As a result, the type of 

squeezing generated by H h1
2ˆ ˆ∝  is qualitatively different from SU(2)-type squeezing. This dif-

ference is reflected in the scaling behaviours with λ of optimal squeezing times and maximum 
squeezing. This type of squeezing can be considered as a pure SU(3) squeezing [82].

From the phase space perspective it is clear that since WH depends on 2β  alone, the only 
coordinate to evolve in time, according to equation (7.44), will be 2α . For an initial state of 
the form

R B0, , 0 , 0 0012 2⟩ ( ) ( ) ⟩ζ λ λ| = | (7.51)

with B arccos 1 52 ( / )= −  (which defines the location of the minimum of the potential function 
(7.50)), the trajectory can be obtained analytically as
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t t0
9

5
1 4 1 5 cos ,2 2 2( ) ( ) ( )( ) ( )α α λ λ β= − − + + (7.52)

resulting in a squeezing of the initial distribution.

8. Conclusion

This review is a survey of the axiomatic formulation of phase space quantum mechanics, con-
centrating on spin-like systems and following Stratonovich. Our aim was to highlight some of 
the uses of phase space methods in a variety of kinematical and dynamical settings, including 
situations where the states of the system contain more than one value of spin angular momen-
tum and provide some explicit expressions ready for their immediate applications in particular 
physical situations.

The formalism for higher symmetry group can be generalized without too much difficulty 
but technology required for practical calculations—various Clebsch–Gordan and recoupling 
coefficients, the properties of coset functions etc—are still not well developed.

Because of the inherent breadth of applications, we have by design included many tech-
nical results, but only references to source papers where fuller derivations and discussions 
can be found. We hope that in this way the review can serve a springboard for further invest-
igations in a research area where new results are constantly published.
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Appendix A. An integral form of w 0S
sˆ ( )( )

One can show that

w 0 d e ,S
s S s

0

2
i zˆ ( ) ( )( ) ˆ ( )∫ ω κ ω=

π
ω (A.1)

i
L

S

S

S

L S

S

1

2

2 1

2 1
;

0
s

L

S
L

L
S

s

0

2

( ) ( ) ( )( ) ∑κ ω
π

χ ω= −
+
+=

−

 (A.2)

where L
S( )χ ω  are the generalized characters of the group [93]

i
S

M

L S

M
e ;

0
.L

S L

M

Mi( ) ∑χ ω = ω− (A.3)

One can also show that the function 0 ( )( )κ ω  in the limit case of large representation 
 dimensions, S 1�  takes the following asymptotic form [94] (see also [95]),

S
S1

i
, ,S0 ( ) → ( ) ( ) ( ) →( ) ⎡

⎣⎢
⎤
⎦⎥κ ω δ ω π

ω
δ ω π− − −

∂
∂

− ∞ (A.4)

where the limit is understood in a weak sense.

J. Phys. A: Math. Theor. 50 (2017) 323001



Topical Review

48

Appendix B. Exact expression for the SU(2) star-product

The SU(2) star-product operation can be expressed as

N a F F FL ,f g S
n

n S
s n

S
s

f
n

S
s

g,
1 2 1 2 1 2( ) ( ) [( ( )) ( ( )) ]( ) ( )S S∑Ω = ⊗− + − − −L L L (B.1)

where we have used the notation A B W W AW BW:f g f g f g
ˆ ˆ ( ) ( ˆ )( ˆ )⊗ = , and

[( ) ( ) ] /= + +N S S S2 1 2 1 ! 2 ! ,S
s 2 (B.2)

=
−
+ +

a
n S n

1

! 2 1 !
.n

n( )
( ) (B.3)

Here 2L  is Casimir operator on the sphere given in equation (3.34) such that

F Y F L Y, , ,S L M S L M
2

, ,( ) ( ) ( ) ( )θ φ θ φ=L (B.4)

with FS(L) succinctly given by

= + + −F L S L S L2 1 ! 2 ! ,S( ) ( ) ( ) (B.5)

but expressible as a function of L(L  +  1). In other words

F F L L M L M, , .S
L M

S
2

,

( ) ( ) ⟩⟨∑= | |L (B.6)

The symbolic powers n( )S±  have been introduced in (B.1) according to

( ) θ
θ

= Π − ∂ ∂θ φ
±

=
− ⎜ ⎟

⎛
⎝

⎞
⎠∓S k cot

i

sin
.n

k
n

0
1 (B.7)

The number of terms in the sum (B.1) is finite because the Wigner function ΩW f
s ( )( )  of an 

operator f̂  is the polynomial of finite degree in the SU(2) generators: specifically

W n f0, deg ,n
f
s ( ) ˆ( ) ( )S Ω = >± (B.8)

where the degree of non-linearity, fdeg ˆ, (in the generators of the su(2) algebra) of an operator 
f̂ , is defined by the maximum value of �, such that f 0k ≠� , with f k�  given in equation (3.16).

As an example, the star-product for S  =  1/2 is given by

Ω

= ⊗

− ⊗

+ − − −

− + − − −

⎜
⎛
⎝ F F F

F F F

L

2
1

2

,

f g

s
S
s

S
s

f S
s

g

S
s

S
s

f S
s

g

,

1 2 1 2 1 2 1 2

1

3 !
1 2 1 1 2 1 1 2 )

( )

( ) [( ( )) ( ( )) ]

( ) [( ( )) ( ( )) ]

( )/

( ) ( )S S

L L L

L L L (B.9)

where F W 0f
s1 2˜ ( ) ( ) =− L  if fdeg 2ˆ ⩾ .

The s
,0

( )Λ±  operators for =±s 1 are given in equation (3.44). For the Wigner function (s  =  0) 
they are quite involved,

θ θ θΛ = Φ − + ∂ Φ
ε

ε
θ
−cos cos 2 sin ,0

0 1

4
2

4
1 2( ) ( ) ( )( ) L L (B.10)
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( ) [ ( )] ( )( ) L L
θ
ε

θ θΛ = Φ ± − ± Φφ ε φ
±

±
±

± −l le
sin

4
2 cos e sin 2 1 ,z

0 i 2
4

i 1 2 (B.11)

where the function ( )Φ L2  is given in equation (3.37) and 2L  is the differential realization of the 
SU(2) Casimir operator (3.34).

Appendix C. Generalized star-product operation

The generalization of the star-product operation for an arbitrary value of of the ordering 
parameter s can be found following [49], leading to the following explicit expression:

1 1( )
( )( )

( ˆ )( ( ˆ ) ( ˆ ))

[((ˆ ) ( ˆ ) ( ( ˆ ) ( ˆ )) )

((ˆ ) ( ˆ ) ( ( ˆ ) ( ˆ )) )]
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ˆ ˆ

/

( ˆ ) /

( ˆ ) /

J J

J J J

J J J

J J

J
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∫
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∑
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π
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+ +
+

× Γ − + Γ + +

× Γ − + Γ + +

Γ − + Γ + +

′π

ϕ
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=

∞
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−

− −

+ − − +

− − − −

′

⎡
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⎤
⎦⎥
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j j
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F J j j

F J j j

F J j j

L
d d

4

1 1

1

2 2

e 2 2

e 2 2 ,

f g
j j j s

n
j
n

s

j
s s

n
j

s j j s

n
j

s j j s

,
,

0

4

2
0 2

1 2

1
2

1 2 0 0 2

1 2 i
1

0
1

0 2

1 2 i
2

0
2

0 2

1 2
0 0

1
2

0

2
1

0 

(C.1)

where

=
−

Γ + +
a

n K n

1

! 2 2
,K

n
n( )

( ) (C.2)

( ˆ ) ( ) ( ) ( ) ( )Θ = + + − ΘF J D j k j k D1 ! ! ,j nm
k

nm
k2 (C.3)

x( )Γ  is the standard Gamma-function, x x x1( ) ( )Γ + = Γ ,

ie i cot
1

sin
, i ,i 0ˆ ˆJ J

⎡
⎣⎢

⎤
⎦⎥θ

θ
ψ θ φ ψ

=
∂
∂
±

∂
∂

∂
∂

= −
∂
∂

ψ±
∓∓ (C.4)

are the contravariant components of the su(2) algebra generators, and

J cot
1

sin
2 cos ,

2
2

2 2

2

2

2 2

2
ˆ

⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥

θ
θ
θ θ φ

θ
φ ψ ψ

= −
∂
∂
+

∂
∂
+

∂
∂
−

∂
∂ ∂

+
∂
∂

 (C.5)

is the Casimir operator.

Appendix D. Reduced SU(3) CG coefficients λ
λ

λ
σ

σ σ
σ− − + −q p q p J

, 0
;

0, ,
2 ;

( ) ( ) ∥ ( )

We have found that the reduced SU(3) CG needed to construct the tensor operators of equa-
tion (7.22) are given by the summations
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∑

∑
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and the following bounds hold:

J p q pMin
1

2
, 0[ ( ) ] ⩽ ⩽σ λ σ+ − + − (D.5)
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σ σ σ= − − = + −s p J s p JMax 0, Min ,min
1

2 max
1

2
[ ( ) ] [ ( ) ] (D.6)

ν σ ν λ σ= + − − − = −q p J s qMax 0, Min ,min
1

2 max[ ( ) ] [ ] (D.7)

Since the SU(2) CGs ;
s

p

J s

J

J

2
1
2

1
2

1
2

/σ

σ σ− + − +
 are known, and indeed have simple expres-

sions given they contain at least one state of maximal weight, the only unknown left in equa-
tion (D.1) is the reduced CG we are looking for.

Further simplification occurs when p σ=  and J  =  0. In this case we have
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Finally, the coefficient λ
λ

λ σ σ
σ

;, 0 0,

0

,

; 0

( ) ( ) ( )  needed to obtain F s( )
σ  of equation (7.26) is given by
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