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Abstract
We describe the construction of SU(3) phase operators using a Fourier-like transform on a
hexagonal lattice. The advantages and disadvantages of this approach are contrasted with other
results, in particular with the more traditional approach based on polar decomposition of
operators.
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(Some figures may appear in colour only in the online journal)

1. Introduction: complementarity and the Fourier
transform

The idea of complementarity in quantum mechanics goes back
to Bohr and his attempt to explain wave–particle duality. The
concept was sharpened by Pascual Jordan, who has stated [1]
that:

For a given value of x, all values of p are equally possible.

This formulation automatically singles out the Fourier
transform connecting operators such as x̂ and p̂ as their
respective (generalized) eigenstates satisfy

hx | pi ⇠ eixp/¯h ) |hx | pi|2 = constant. (1)

The concept is not limited to continuous systems but also
exists in finite dimensions. In this paper, we will discuss the
construction of SU(3) phase operators, which are expected
to be complementary to number operators. This paper
emphasizes the importance of the finite Fourier transform and
in particular investigates a new type of generalization of the
Fourier transform that is constructed to preserve the symmetry
of a hexagonal lattice, which is the natural (discrete) lattice to
describe states appropriate for the description of a collection
of three-level systems. Our approach should be contrasted
with the approach of Dirac [2] which emphasizes polar
decompositions and which has been applied to SU(2) and
other systems in [3, 4].

2. Two examples

Consider first a spin- 1
2 system, taking as operators the Pauli

matrices �
x

, �
y

and �
z

. The eigenstates {|+i
z

, |�i
z

} of �
z

and
the eigenstates {|+i

x

, |�i
x

} of �
x

are complementary:

|
x

h+ | +i
z

|2 = |
x

h� | +i
z

|2 = |
x

h+ | �i
z

|2 = |
x

h� |�i
z

|2 = 1
2

= constant. (2)

The eigenstates of �
z

and �
x

are related by a finite Fourier
transform:

F = 1p
2

✓
1 1
1 �1

◆
. (3)

The operators �
x

and �
z

are said to be complementary. The
same property holds for the pair �

y

and �
z

and for the pair
�

y

and �
x

. The transformation matrix connecting any two sets
of eigenstates of the Pauli operators remains a finite Fourier
transform.

A similar construction exists for a three-level system (or
qutrit). Defining

Ẑ =
0

@
1 0 0
0 ! 0
0 0 !2

1

A , X̂ =
0

@
0 1 0
0 0 !

!2 0 0

1

A , ! = e2⇡ i/3,

(4)

and writing their respective eigenstates as {|0
z

i, |1
z

i, |2
z

i}
and {|0

x

i, |1
x

i, |2
x

i} we find for instance |h1
x

| 0
z

i|2 =
|h2

x

| 2
z

i|2 = 1
3 with all other such overlaps constant. Here

again, the eigenstates of X̂ and Ẑ are related by a finite
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Figure 1. The shift action of the su(2) raising operator Ŝ+.

Fourier transform:

F = 1p
3

0

@
! 1 !2

! !2 1
1 1 1

1

A. (5)

This is the right time to mention some of the properties
of the finite Fourier matrix F . It is unitary, which implies

X

i

F

⇤
ki

F

i j

= �
i j

. (6)

(This would be orthogonality under integration in the
continuous case.) F

4 = 1, and its entries are characters of
finite Abelian groups. In dimension n:

F

jk

= e2⇡ i jk/n/
p

n. (7)

Finally, |F
i j

| have constant magnitude, connecting with
Jordan’s definition of complementarity.

3. SU(2) phase states

Following Dirac [2] and others [3], phase operators in su(2)
(and other) systems are constructed by writing the matrix for
Ŝ+ (or Ŝ�) in polar form, namely

Ŝ+ 7!
j�1X

m=0

c

m

| j, m + 1ih j, m| = E · D, (8)

where D is diagonal and E is a ‘phase’ part, containing
entries that produce the shifting action of S+ on the basis
states. The operator E is expected on physical grounds to be
complementary to the diagonal operator Ŝ

z

.
Geometrically, the set of eigenvalues {m; m = � j, � j +

1, . . . , j � 1, j} of Ŝ

z

acting on number states | jmi are
equidistant points on a line and the action of the ladder
operators Ŝ± takes a point m to its neighbor m ± 1. The action
of Ŝ+ is pictorially represented in figure 1.

Because | j ji is killed by Ŝ+, the rank of Ŝ+ is one less
than the dimension of the system, so E is not completely
defined: we can adjust the entries in one line. The usual choice
makes E cyclic (E

2 j+1 = 1), so it generates an Abelian group
of order 2 j + 1:

E = ei' 7!

0

BBBBB@

0 1 ...

0 1

. . .

0 1

1 0 ... 0 0

1

CCCCCA
=

j�1X

m=� j

|m + 1ihm| + | � jih j |.

(9)
This E is unitary and can be written in the form E = ei'̂ ,
with '̂ being the putative Hermitian phase operator. The
eigenvectors of E are eigenvectors of '̂ and defined to be the
SU(2) phase states. The components of the mth eigenvector

(0,1) (2,0)

(0,-2)

(-2,2)

(1,-1)(-1,0)

ω1

ω2

α2

α1

α1+α2

0)

Figure 2. Left: population differences (n1 � n2, n2 � n3) for the
states |n1n2n3i with n1 + n2 + n3 = 2. (a, b) is located at a!1 + b!2
with !1, !2 being the lattices vectors. Right: graphical
representation of the shift action of the ladder generators of su(3) on
the hexagonal lattice. The ringed dot at the center represents the two
diagonal population difference operators ĥ1 and ĥ2, which do not
shift the basis states.

|'
m

i are just elements of a Fourier matrix F . Thus, the phase
eigenstate |'

m

i is given by

|'
m

i =
X

k

F

mk

| jki = 1p
2 j + 1

X

k

e2⇡ ikm/(2 j+1)| jki. (10)

4. SU(3) and SU(3) phase states

4.1. Geometry of SU(3) states

The algebra su(3) appears naturally in the construction
of number-preserving transition operators for three-level
systems. There are six transition operators, usually denoted by
Ĉ

i j

= a

†
i

a

j

for i 6= j = 1, 2, 3, and two population differences
ĥ1 = a

†
1a1 � a

†
2a2 and ĥ2 = a

†
2a2 � a

†
3a3. The states |200i and

|110i, for instance, respectively correspond to the pairs (2, 0)
and (0, 1) of population differences. Pairs are located on a
hexagonal lattice with basis vectors !1 and !2 as illustrated
on the left of figure 2.

The action of Ĉ

i j

on lattice points is illustrated on the
right of figure 2. Basis vectors ↵1 and ↵2 associated
with the operators Ĉ12 and Ĉ23 are dual (reciprocal) to
the lattice vectors !1 and !2, respectively, as illustrated.
Using the hexagonal geometry, two points (a, b) and (c, d)
corresponding to two pairs of population differences differ
by an integer combination of the vectors ↵1 and ↵2. The
action of Ĉ

i j

on the state |n1n2n3i is to translate the point
(n1 � n2, n2 � n3) by the vector associated with Ĉ

i j

to the
point (n0

1 � n

0
2, n

0
2 � n

0
3), so that, for instance,

Ĉ12|110i ⇠ |200i ) (0, 1) 7! (2, 0) = ↵1 + (0, 1). (11)

The central ringed dot represents the two diagonal population
difference operators ĥ1 and ĥ2. There should be one phase
operator conjugate to each ĥ

i

.

4.2. Two solutions: boundaries

If we approach the construction of SU(3) phase states
using polar decompositions, we are faced with an interesting
problem. Because there are two basic shift directions, ↵1 and
↵2, each one of Ĉ12 and Ĉ23 will come with its own set of not
necessarily mutually compatible boundary conditions.

In the simplest case of the states |100i, |010i and |001i,
the shift matrices E12 and E23 that enter in the decompositions

2
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Figure 3. A graphical representation of how cyclic boundary
conditions can be imposed to complete the matrix E12 to yield
equation (12).

of Ĉ12 and Ĉ23, respectively, contain two lines that cannot be
uniquely determined. These matrices can be completed in two
different ways. First, we can write

E12=
0

@
0 1 0
1 0 0
0 0 1

1

A= [|010ih100| + |100ih010|] + |001ih001|,

(12)

E23 =
0

@
1 0 0
0 0 1
0 1 0

1

A= |100ih100| + [|010ih001| + |001ih010|].

(13)

This kind of solution also exists for more general cases
where n1 + n2 + n3 > 1. It consists in considering subsets of
states with the same value for n3—such subsets of states
fall on lines parallel to the ↵1 direction—and following the
procedure of SU(2) on each line to obtain E12. Similarly, by
considering subsets of states with the same value of n1—these
states now lie on lines parallel to the ↵2 direction—we can
follow the SU(2) procedure for each line and obtain E23.
However, one feature of this solution, already present in
equations (12) and (13), is that the resulting phase operators
do not commute:

[E12, E23] 6= 0 ) ei✓'̂12 ei� '̂23 6= ei(✓'̂12+� '̂23). (14)

This in turn implies that the phases are not additive.
For the case of the states |100i, |010i and |001i, it is

possible to find shift matrices E12 and E23 compatible with
the polar decomposition of the respective operators so that
[E12, E23] = 0 (figure 4). These matrices are

E12 =
0

@
0 1 0
0 0 !

!2 0 0

1

A, E23 =
0

@
0 !2 0
0 0 1
! 0 0

1

A, ! = e2⇡ i/3.

(15)
Note that E12 is just the operator X̂ of equation (4), while
E23 = X̂

2. Clearly, E12 and E23 commute. However, we have
not been able to find similar solutions for sets of states with
n1 + n2 + n3 > 1.

4.3. Finite Fourier transform on a hexagonal lattice

As an alternative to the construction based on polar
decomposition, we look for a finite Fourier transform (FFT)

Figure 4. A graphical representation of how cyclic boundary
conditions can be imposed to complete the matrices E12 and E23 to
yield equation (15).

adapted to the discrete hexagonal symmetry natural to SU(3)
states. Such an FFT was proposed in [5] and will be adapted
to our needs.

We start with the physical states |n1n2n3i. The procedure
of [5] requires that the ‘data points’ be in the first hextant
of the lattice, so we find a rigid displacement of the set of
population differences (n1 � n2, n2 � n3) corresponding to
the physical states so that every pair (n1 � n2, n2 � n3) is
mapped to a single point in the first hextant (figure 4). One
can show that the rigid displacement is a linear transformation
comprising a translation, a rotation and a change of scale of
the original pairs of points. The final result of the sequence is

|n1n2n3i 7! (n1 � n2, n2 � n3) 7! (n1, n2). (16)

An example of the result is given in figure 5. We obtain for
each point (a, b) in the first extant its orbit, i.e. the set of points
obtained by considering reflections of (a, b) through mirrors
perpendicular to ↵1 and ↵2. Depending on the value of a and
b, an orbit may contain 1, 3 or 6 points. The orbits for the
points (2, 0) and (1, 1) are illustrated in figure 6. Each orbit is
labeled by its starting point (a, b) in the first extant. There is
the same number of orbits as the number of states. Each orbit
is used to construct a so-called orbit function

�(a,b)(n1, n2) ⇠ !(2a+b)n1+(a+2b)n2 + !(b�a)n1+(a+2b)n2

+ !(2a+b)n1+(a�b)n2 + !�(a�b)n1�(b+2a)n2

+ !�(a+2b)n1+(b�a)n2 + !�(2b+a)n1�(b+2a)n2 , (17)

with (n1, n2) points in the first hextant. The functions � are
closely related to characters of elements of finite order of
SU(3).

It is essential to rigidly translate the population
differences of physical states. Two states |n1n2n3i, |n0

1n

0
2n

0
3i

that differ only by a permutation of n1, n2, n3 yield population
differences (n1 � n2, n2 � n3) and (n0

1 � n

0
2, n

0
2 � n

0
3) that are

on the same orbit and so produce identical functions � . It is
only once the population differences have been translated to
the first hextant that (n1, n2) and (n0

1, n

0
2) will lie on different

orbits.
The functions � need to be properly normalized and

weighted as described in [5], but once this is done, they satisfy
an orthogonality relation

X

n1,n2

(�(a,b)(n1, n2))
⇤ �(a0,b0)(n1, n2) ⇠ �

aa

0�
bb

0 . (18)
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Figure 5. An example of how the pairs of population differences (p, q) obtained from the states |n1n2n3i with n1 + n2 + n3 are mapped to
the first hextant.

Figure 6. The orbits of the points (2, 0) (in red) and (1, 1) (in
green).

The orbit functions can then be used to obtain a Fourier matrix

F =

0

B@
�

a1,b1(s1, s2)1 . . . �
a1,b1(s1, s2)k

...
. . .

...

�
a

k

,b
k

(s1, s2)1 . . . �
a

k

,b
k

(s1, s2)k

1

CA. (19)

So defined, the matrix F immediately satisfies the majority of
conditions given at the end of section 2. In particular, for the
set of states {|100i, |010i, |001i, the matrix F is exactly the
same as that of equation (5). However, for other states with
n1 + n2 + n3 > 1, the matrix F no longer contains entries of
the same magnitude. For instance, using the states |n1n2n3i
with n1 + n2 + n3 = 2, we find

F = 1
2

0

BBBBBBBBBB@

1p
3

1 1p
3

1 1 1p
3

1 � 1p
3
! !2 � 1p

3
!2 �1p

3
!

1p
3

!2 1p
3
! ! 1 1p

3
!

1 � 1p
3

! � 1p
3
! �1p

3
!2

1 �1p
3

1 �1p
3

�1p
3

1
1p
3

! 1p
3
!2 !2 1 1p

3
!

1

CCCCCCCCCCA

,

! = e2⇡ i/3.

(20)

4.4. SU(3) phase states

Now define SU(3) phase states as transforms of the shifted
population difference eigenstates:

|⌘1, ⌘2i(n1,n2) ⌘
X

t1,t2

F(n1,n2),(t1,t2)|t1, t2i. (21)

Phase ‘operators’ are conjugate to population difference
operators:

⌘̂1 = Fĥ1 F

�1, ⌘̂2 = Fĥ2 F

�1. (22)

Since [ĥ1, ĥ2] = 0, we recover [⌘̂1, ⌘̂2] = 0: phases commute.

0
1

2

0

1
2

0.0

0.1

0.2

0
1

2

0

1
2

0.0

0.1

0.2

Figure 7. Left: probability histogram for any one of the input states
|200i, |020i and |002i. Right: probability histogram for any one of
the input states |110i, |101i and |011i. Columns of the same color
have the same height.

4.5. Complementarity and number difference distributions

To get insight into what the phase states ‘look like’,
we consider the probabilities |hn1, n2 | ⌘1, ⌘2i|2. Recall the
correspondences |n1n2n3i $ (n1, n2) between physical states
and their translated population difference. Thus

|100i $ (1, 0), |010i $ (0, 1), |001i $ (0, 0). (23)

For these states, we find, for every (n1, n2) and every (a, b),

|h(n1, n2)| [F |(a, b)i] |2 = 1
3 . (24)

This is no surprise, as |F(n1n2),(a,b)|2 = 1
3 for this case.

For n1 + n2 + n3 = 2, it is convenient to construct
probability histograms for points in the first hextant. Using as
the input state any one of the states |200i $ (2, 0), |020i $
(0, 2) and |002i $ (0, 0), we find two and only two possible
amplitudes, as illustrated with two different colors on the left
of figure 7. The corresponding histogram for any one of the
input states |110i $ (1, 1), |101i $ (1, 0) and |011i $ (0, 1)

is on the right of figure 7.
For a given input state not every Fourier component has

the same amplitude: complementarity in the sense of Jordan
is lost—as expected since |F(n1n2),(a,b)|2 is no longer constant.
However, points (n1, n2) and (n0

1, n

0
2) with equal amplitudes

in the first hextant correspond to physical states |n1n2n3i and
|n0

1n

0
2n

0
3i which differ by a permutation of their entries.

For a generic input state, such as |0 21 9i, the probability
landscape is rugged without any special features. However, for
input states of the type |N00i or |0N0i or |00N i, which are
mapped to the corner edges of the first hextant, we find that the
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Figure 8. Probability landscapes for input states |500i, |1000i and |3000i.
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Figure 9. Variance of the phase operator ⌘̂1 calculated using the physical states |n1n2n3i. Left: n1 + n2 + n3 = 5. Right: n1 + n2 + n3 = 30.

probability landscape is remarkably regular. The probability
landscape is asymptotically flat, meaning that, in the large
N limit, the phase states F |N00i, etc are asymptotically

conjugate to the Fock states |n1n2n3i.

4.6. su(3) phase operators

The phase operators ⌘̂1, ⌘̂2 of equation (22) generally have
‘complicated’ expressions. In spite of this, we have found the
following observation to hold. If we evaluate the variances
1⌘1 and 1⌘2 using the physical states |n1n2n3i, the smallest
variances always occur for the states |N00i, |0N0i or |00N i.
The landscape of variances of ⌘̂1 evaluated in the physical
states |n1n2n3i is illustrated in figure 9 for n1 + n2 + n3 = 5
and 30.

5. Conclusions

The polar decomposition of operators in SU(3) produces
phase operators that are ambiguous and not unique: in general,
non-commuting raising operators lead to a decomposition
that produces non-commuting phase operators. Moreover, this
approach produces an ‘exponential phase’ rather than a phase
operator.

We can obtain Hermitian commuting ‘phase-like’
operators by using symmetry-adapted FFT. The procedure is

mathematically systematic but not very intuitive, and we
lose the connection with complementarity as defined by
Jordon. With this approach the physical states |N00i, |0N0i
and |00N i stand out as having unexpected properties of
asymptotic complementarity. The variances of the phase
operators evaluated using those states are always the smallest.

An unanswered question (not discussed in this paper)
is the difficulty in imposing correct cyclic boundary
conditions on the phase operators themselves once they are
exponentiated.
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