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Abstract
We discuss the polarization of paraxial and nonparaxial classical light fields by resorting to a
multipole expansion of the corresponding polarization matrix. It turns out that only a dipolar
term contributes when one considers SU(2) (paraxial) or SU(3) (nonparaxial) as fundamental
symmetries. In this latter case, one can alternatively expand in SU(2) multipoles, and then both a
dipolar and a quadrupolar component contribute, which explains the richer structure of this
nonparaxial instance. These multipoles uniquely determine Wigner functions, in terms of which
we examine some intriguing hallmarks arising in this classical scenario.
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1. Introduction

The standard theory of polarization optics deals with paraxial
fields with a well-defined direction of propagation and thus a
specific transverse plane. Such beamlike fields are described
by two orthogonal electric field components and, conse-
quently, their polarization is characterized by a 2 × 2 corre-
lation matrix, usually called the polarization matrix (Mandel
and Wolf 1995). When we expand this matrix onto the Pauli
basis, the corresponding coefficients are nothing but the time
honored Stokes parameters. They determine a locus on the
Poincaré sphere, wherein the state of polarization is elegantly
visualized; actually, the degree of paraxial polarization can be
seen as the length of the Stokes vector.

The necessity of addressing new issues, such as highly
nonparaxial fields (Ash and Nicholls 1972), narrow-band
imaging systems (Pohl et al 1984), and the recognition of
associated propagation questions (Petruccelli et al 2010), has

fuelled interest in extending this two-dimensional (2D)
approach to fully three-dimensional (3D) field distributions,
where, in general, there is no well-defined propagation
direction, and the Hermitian coherence matrix is 3 × 3
(Roman 1959, Brosseau 1998). However, when discussing
the corresponding degree of polarization, some discrepancies
occur (Samson 1973, Barakat 1977, Setälä et al 2002, Kor-
otkova and Wolf 2004, Ellis et al 2005, Luis 2005, Den-
nis 2007, Moya-Cessa et al 2008, Sheppard 2011), mainly
because notions that are equivalent in a 2D world lead to
different definitions when extended to the 3D domain.

In this paper, we look at this problem from the per-
spective of a multipolar expansion that has been successfully
employed in quantum optics (de la Hoz et al 2013, 2014,
Sánchez-Soto et al 2013). For the 2D case, SU(2) is the
natural symmetry group of the problem and the corresponding
expansion of the polarization matrix contains only a dipolar
term. The 3D polarization can be treated in quite a similar
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way by taking now SU(3) as the symmetry group; again, only
the SU(3) dipole contributes. Yet we can also expand the
3 × 3 polarization matrix in SU(2) tensors, getting an SU(2)
dipole and a quadrupole. We discuss the role of these mul-
tipoles and construct Wigner functions that can be very useful
in appreciating the substantial differences between paraxial
and nonparaxial polarization.

2. 2D polarization

2.1. SU(2) polarization structure

We briefly review here the ingredients we shall need later for
a proper understanding of the 3D polarization. We consider a
monochromatic beam propagating in the z direction. The
electric field can be resolved in the transverse plane in terms
of horizontal (x) and vertical (y) components, which are taken
to be a probabilistic ensemble given by Ex and Ey. The cor-
responding 2 × 2 (equal-time) polarization matrix (also called
the coherence matrix) is defined as (Mandel and Wolf 1995)

E E E E

E E E E
C . (2.1)

x x x y

y x y y

* *

* *

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟=

Here, the brackets denote ensemble averaging over different
realizations. The diagonal elements of the Hermitian matrix C
represent the energy distribution between the two components
of the field: I E E CTr ( )x y

2 2= 〈∣ ∣ 〉 + 〈∣ ∣ 〉 = , where Tr is the
trace of the matrix. Without loss of generality, we henceforth
normalize this intensity to unity. On the other hand, the off-
diagonal elements describe the correlations between the field
components.

Sometimes, the polarization matrix is interpreted as a
classical counterpart of the density operator. Nonetheless, we
emphasize that while the latter carries complete information
of a quantum system, the former specifies only first-order
classical correlations.

Polarization transformations are generated by wave
plates and represented by 2 × 2 unitary matrices of SU(2)
(Simon and Mukunda 1989)

R R( , , )

e cos ( 2) e sin ( 2)

e sin ( 2) e cos ( 2)
, (2.2)

g

i( ) 2 i( ) 2

i( ) 2 i( ) 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

α β γ

β β
β β

≡

=
−α γ α γ

α γ α γ

− + − −

+ − + +

where ( , , )α β γ denote the Euler angles. The action of these
transformations on the polarization matrix is via conjugation

C R C R . (2.3)g g g
†=

This symmetry seems to call for an SU(2)-covariant
formulation of the problem. To this end, we recall that any
matrix O acting in the S(2 1)+ -dimensional Hilbert space

,S which carries the irreducible representation (irrep) with

spin S of SU(2), can be expanded as

O TO ˆ . (2.4)S

K

S

q K

K

Kq
S

Kq
S( )

0

2
( ) ( )∑ ∑=

= =−

Here, the irreducible tensor (or multipole) operators T̂Kq
S( )

constitute an orthonormal basis

T TTr ˆ ˆ , (2.5)Kq
S

K q
S

SS KK qq
( ) ( ) †⎡

⎣⎢
⎤
⎦⎥ δ δ δ=′ ′

′
′ ′ ′

and have the right transformation properties under SU(2)

T D TR R( , , ) ˆ ( , , ) ( , , ) ˆ , (2.6)Kq
S

q

q q
S

Kq
S( ) † ( )∑α β γ α β γ α β γ=

′
′ ′

where D ( , , )q q
S α β γ′ stands for the Wigner D-function

(Varshalovich et al 1988). The reader is referred to the
abundant literature (Fano and Racah 1963, Blum 1981,
Varshalovich et al 1988) to learn more about the amazing
properties of these tensors. The point we wish to stress for our

purposes here is that T̂Kq
S( )

is expressible as the Kth power of
the SU(2) generators.

The corresponding expansion coefficients

O TOTr ˆ (2.7)Kq
S S

Kq
S( ) ( ) ( ) †⎡⎣ ⎤⎦=

are known as state multipoles. The hermiticity imposes the
symmetry condition

O O( 1) . (2.8)K q
S q

Kq
S( ) ( )= −−

For the case at hand in (2.1), we are dealing with the
fundamental irrep of spin S 1 2= . Accordingly, the expan-
sion (2.4) reduces to (we drop the superscript 1/2 henceforth,
as there is no risk of confusion)

C T C TC ˆ ˆ , (2.9)
q

q q00 00

1

1

1 1∑= +
=−

+

and one can check that

T Tˆ 1

2
, ˆ 1

2
, (2.10)q q00 2 1 σ= =

where 2 is the identity matrix and q 0, 1= ± runs over the
spherical basis. The unit vectors in that basis ( , , , )1 0 1e e e− +
are related to the Cartesian ones e e e( , , )1 2 3 by

( )e e e
1

2
i , , (2.11)1 1 2 0 3e e= ∓ ± =±

and ( , , )1 2 3σ σ σ is the standard Pauli basis.
Obviously, C 1 200 = and the physical relevant infor-

mation comes from the dipole C1q. In fact,

( )n C qC2 Tr , 0, 1, (2.12)q q q1 σ≡ = = ±

are nothing but the components of the Stokes vector, which in
Cartesian coordinates n n nn ( , , )1 2 3= provides geometric
information about the polarization ellipse: n1 and n3 carry
information about the alignment of the ellipse axes, while n2π
gives the ellipse area, signed according to polarization
handedness.
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With this notation, (2.9) can be recast as

n n n

n n n
C

1

2

1 i
i 1

. (2.13)
3 1 2

1 2 3

⎛
⎝⎜

⎞
⎠⎟=

+ −
+ −

so that for each polarization matrix C we have a natural map
onto a dipole n n nC n ( , , )1 2 3↦ = . This is consistent with
the fact that at the classical level only first-order moments of
the Stokes variables are taken into consideration.

The length of n will be denoted as

n n nn , (2.14)(2)
1
2

2
2

3
2= = + +

and is the conventional degree of polarization for classical 2D
fields. If the relation between the Ex and Ey is completely
deterministic, the field is fully polarized. For such a pure state
(borrowing the terminology from quantum optics), the
polarization matrix is idempotent, i.e.,

C C , (2.15)pol
2

pol=

and we get 1pol
(2) = . On the other hand, if the components of

the field are fully uncorrelated, the off-diagonal elements are
zero. If, in addition, the energy is distributed evenly between
the x and y components,

C
1

2
, (2.16)unpol 2= 

and we have 0unpol
(2) = .

Note that the SU(2) polarization transformations (2.3)
induce rotations on the Stokes vector n, as confirmed by the
well-known relation between SU(2) and the group of rotations
SO(3) (Cornwell 1997). Therefore, (2) is clearly unchanged
by these transformations.

Finally, we stress that for quantum fields with N photons,
the spin of the associated irrep is S N 2= , so classical
polarization is formally identical with single-photon quantum
polarization, which, in turn, is the prototype of a qubit.

2.2. Wigner function on the Poincaré sphere

In signal processing, the Wigner representation yields a
description displaying both the time and frequency features,
which are related via the Fourier transform. This arises
naturally in music, for instance, where a signal is usually
described not by a time function nor by the Fourier transform
of that function, but by its musical score (i.e., a prescription of
the frequencies of the tones that should be present at a certain
moment). It arises also in mechanics, where the position and
the momentum of a particle are given simultaneously, leading
to a simple interpretation in phase space.

Although originally introduced to represent quantum
mechanical phenomena in phase space (Wigner 1932), the
Wigner distribution function was established in optics (Wal-
ther 1968) to relate partial coherence with radiometry. Since
then, a great number of applications of this function have
been reported (Dragoman 1997, Mecklenbraüker and Hla-
watsch 1997, Galleani and Cohen 2002, Bastiaans 2009,
Alonso 2011).

With regard to polarization, the SU(2) symmetry dis-
cussed earlier allows us to take advantage of the pioneering
papers by Stratonovich (1956) and Berezin (1975), who
worked out bona fideWigner distributions on the sphere. This
construction was later generalized by others (Agarwal 1981,
Brif and Mann 1998, Heiss and Weigert 2000, Klimov and
Chumakov 2000, Klimov and Romero 2008) and has proved
to be very useful in visualizing properties of spinlike systems
(Dowling et al 1994, Chumakov et al 1999, Klimov 2002).

The Wigner function associated to the operator O S( ) is
uniquely defined as (Dowling et al 1994)

W O Y( , ) ( , ), (2.17)S

K

S

q K

K

Kq
S

KqO
( )

0

2
( )∑ ∑θ ϕ θ ϕ=

= =−

where Y ( , )Kq θ ϕ are the standard spherical harmonics. In
quantum optics, O is most often taken as the density operator.
One can check that, in this way, the function W ( , )S

O
( ) θ ϕ

satisfies all the pertinent requirements. We have the normal-
ization

S
WOTr

2 1

4
( , ) d , (2.18)S S

O
( ) ( )

2

⎡⎣ ⎤⎦ ∫π
θ ϕ Ω= +

where d sin d dΩ θ θ ϕ= is the invariant measure on the unit
sphere 2 .

Besides, W ( , )S
O
( ) θ ϕ is covariant under rotations, which

means that for a rotated operator O R O Rg
S

g
S

g
( ) ( ) †= one has

( )W W R( ) , (2.19)S S
gO O

( ) ( ) 1
g

Ω Ω= −

where ( , )Ω θ ϕ= parametrizes the points in 2 . The Wigner
function of the rotated state follows thus the rotation rigidly
without deformation, reflecting the fact that physics should
not depend on the orientation of the reference frame.

For the classical polarization matrix C, the associated
Wigner function reads (we also omit the superscript 1/2)

W Y n Y( , )
1

2
( , ) . (2.20)

q

q qn 00

1

1

1

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑θ ϕ θ ϕ= +

=−

+

In figure 1 we plot this Wigner function for a fully polarized
field with n (0, 0, 1)= . The covariance under rotations
guarantees that this is indeed the form (apart from trivial
rotations) for any other polarized state.

In the opposite instance of unpolarized states only the
monopole term contribute: the resulting Wigner function is
just an isotropic sphere. Partially polarized states smoothly
interpolate In between these two limiting cases.

As we can appreciate, the Wigner distribution is not a
delta-like function, as one would expect from the accepted
practice of picturing the state by the point determined by n.
This would be compatible with the assumption that classi-
cally, since there are no fluctuations, the polarization direction
can be measured in a single-shot measurement. Instead, the
Wigner function has some width because if one measures a
classically polarized state in a rotated Stokes basis, then one
will only detect part of the intensity. This means that the
detected fraction of the polarization correspond to the overlap

3
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of the Wigner function for the state and the corresponding one
for the detection direction on the Poincaré sphere. In fact, if
we denote by Wn and Wn′ these two Wigner functions, then

W W( , ) ( , ) d cos
2

, (2.21)n n
2⎜ ⎟
⎛
⎝

⎞
⎠∫ θ ϕ θ ϕ Ω χ=′

where n n· cos χ′ = is the angle between the two vectors.
This is just another way to look at the Malus law from a
phase-space perspective (Wódkiewicz 1995).

3. 3D polarization

3.1. SU(3) polarization structure

Next, we loosen the restriction of planar geometry and
examine the behavior of electric fields having three non-
vanishing components, in directions we denote as x, y, and z,
respectively. Now, the vibrations of the field are no longer
constrained to a plane and the polarization must be described
by a 3 × 3 matrix

C

E E E E E E

E E E E E E

E E E E E E

. (3.1)

x x x y x z

y x y y y z

z x z y z z

* * *

* * *

* * *

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
=

Once more, we normalize the total intensity
I E E E CTr ( )x y z

2 2 2= 〈∣ ∣ 〉 + 〈∣ ∣ 〉 + 〈∣ ∣ 〉 = , to unity. If all of
the components are completely uncorrelated (and their
energies are equal) the field is unpolarized and its direction
is random. If one of the components has less energy than the
other two, the vibrations are less random and, consequently,
the field is more polarized than in the equal-energy case. Any
field having only two non-vanishing components is thus never
unpolarized in the 3D sense, regardless of the correlations
between the components. Hence, a planar field, which is
commonly called unpolarized in 2D, is not fully unpolarized
but partially polarized in a 3D description.

As in 2D, the field is called fully polarized if all of the
field components are completely correlated. Hence, in con-
trast to an unpolarized field, a planar field that is fully

polarized is always fully polarized also in the 3D sense. One
of the most remarkable differences between 2D and 3D is that
the 3 × 3 polarization matrix cannot be generally expressed as
a sum of unpolarized and fully polarized parts (Ellis
et al 2005).

The 3D polarization transformations are represented by
3 × 3 matrices of SU(3), which we write as (Rowe et al 1999)

( ) ( )
( )

R R T T

T

( ) , , , ,

, , ( , ), (3.2)

g g 23 1 1 1 12 2 2 2

23 3 3 3 1 2Φ

ω α β α α β α

α β α γ γ

= ≡ − −

× −

where ω is an octuple of Euler-like angles
( , , , , , , , )1 1 2 2 3 3 1 2ω α β α β α β γ γ= and the set T{ }ij comprises

SU(2) subgroup matrices

T

1 0 0

0 e cos ( 2) e sin ( 2)

0 e sin ( 2) e cos ( 2)

, (3.3)23
i( ) 2 i( ) 2

i( ) 2 i( ) 2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

β β
β β

= −α γ α γ

α γ α γ

− + − −

+ − + +

or

T
e cos ( 2) e sin ( 2) 0

e sin ( 2) e cos ( 2) 0
0 0 1

, (3.4)12

i( ) 2 i( ) 2

i( ) 2 i( ) 2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

β β
β β=

−α γ α γ

α γ α γ

− + − −

+ − + +

depending on the values of ij( ). Also,

( )( ) ( )( , ) diag e , e , e . (3.5)1 2
2i i 2 i 21 1 2 1 2Φ γ γ = γ γ γ γ γ− − +

Equation (3.2) factorizes then into SU(2) submatrices, with
parameters defined by the corresponding Euler angles.

The action of these transformations on C is via con-
jugation, as in (2.3), and induces rotations of the vector n.
However, one word of caution seems pertinent here: there is
no obvious physical interpretation via optical elements of SU
(3) transformations, as now the plane waves averaging to the
3 × 3 polarization matrix do not share a common propagation
direction, in general. Any physical device represented by a
SU(3) transformation should be insensitive to the propagation
directions of the separate members of the ensemble
(Dennis 2004).

After our discussion in section 2, one might be tempted
to look for an expansion of C in SU(3) irreducible tensors.
The corresponding formalism is now much more involved
than for SU(2), and we refer the reader to (Banyai et al 1966)
for a full account. Without going into inessential details, such
an expansion reads

C ˆ ˆ , (3.6)00 00

1

8

1 1   ∑= +
ν

ν ν
=

where the relevant SU(3) tensors are

ˆ 1

3
, ˆ 1

2
, (3.7)00 3 1  λ= =ν ν

and { }λν (the ν index running from 1 to 8) are the Gell-Mann
matrices, whose properties are discussed in detail e.g., in
(Cornwell 1997).

Figure 1. Density plot over the unit sphere (the scale is indicated on
the left) of the Wigner distribution for a 2D polarization state with
n (0, 0, 1)= .
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Therefore, 1 300 = and the SU(3) dipole is 1 ν.
Actually, if we define

( )n C3
3

2
Tr , (3.8)1 λ≡ =ν ν ν

then we have

( )
( ) ( )

( ) ( )
( ) ( )

C

n n n n n n

n n n n n n

n n n n n

n
1

3
3 ·

1

3

1 3 3 i 3 i

3 i 1 3 3 i

3 i 3 i 1 2

. (3.9)

3

3 8 1 2 4 5

1 2 3 8 6 7

4 5 6 7 8

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

λ= + =

×

+ + − −

+ − + −

+ + −



This is the SU(3)-equivalent version of (2.13). Consequently,
the SU(3) symmetry gives a natural degree of polarization as

nn , (3.10)(3)

1

8
2∑= =

ν
ν

=



i.e., again the length of the Stokes vector, which is readily
shown to verify 0 1(3)⩽ ⩽ .

3.2. Picturing multipoles on the Poincaré sphere

Although the previous SU(3) approach is mathematically
correct, it is not clear physically what (3) represents. Unlike
in 2D, where the Stokes vector represents the complete state
of polarization and can be easily visualized, the generalized
Stokes vector is eight-dimensional and the geometrical space
supporting this vector is not intuitive at all.

To proceed further, we note that the 3 × 3 matrix C acts
also in the carrier space of the irrep S = 1 of SU(2). In con-
sequence, we can alternatively expand C following the gen-
eral prescription (2.4). Omitting for simplicity the superscript
1, we get

C T T Tˆ ˆ ˆ , (3.11)
q

q q

q

q q00 00

1

1

1 1

2

2

2 2  ∑ ∑= + +
=−

+

=−

+

where now the SU(2) tensors are (Varshalovich et al 1988)

T

T S q

T C S S q

ˆ 1

3
,

ˆ 1

2
, 0, 1,

ˆ , 0, 1, 2. (3.12)

q q

q

r r
r r
q

r r

00 3

1

2

, 1

1

1 ,1
2∑

=

= = ±

= = ± ±
′=−

+

′ ′



Here, C r r
q

1 ,1
2

′ is the corresponding Clebsch–Gordan coefficient
and Sq stands for the spherical components of the su(2) sub
algebra generated by S ( , , )2 5 7λ λ λ= − .

The resulting multipoles can be expressed as

( )
( )

D CT

Q CT

1 3 ,

3 3 Tr ˆ ,

3 Tr ˆ . (3.13)

q q q

q q q

00

1 1

2 2






=

≡ =

≡ =

As a consequence, this leads naturally to an SU(2) Wigner
function:

W Y D Y

Q Y

( , )
1

3
( , )

( , ) . (3.14)

q

q q

q

q q

00

1

1

1

2

2

2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∑

∑

θ ϕ θ ϕ

θ ϕ

= +

+

=−

+

=−

+

What it is remarkable is that, in this way, we can picture
the 3D polarization state in the sphere 2 associated to
SU(2). In figure 2 we have plotted this Wigner function
for the state with eight-dimensional Stokes vector
n (0, 0, 3 2, 0, 0, 0, 0, 1 2)= , which is 3D fully polar-
ized, as 1(3) = . However, this state has D (0, 0, 1 2)= , so
is not SU(2) polarized and presents a quadrupole contribution
along the z axis. Note that the different multipolar contribu-
tions can be plotted separately, as in the figure. Unpolarized
states have only monopole contribution, so their Wigner
function is isotropic.

To investigate this point, we recall that it is conventional
to use a quadrupolar tensor, with Cartesian components

Q S S S S i kˆ 1

2

4

3
, , {1, 2, 3},(3.15)ik i k k i jk⎜ ⎟⎛

⎝
⎞
⎠δ= + − ∈

which are related with T̂ q2 in the form

( )
( )

T Q Q Q

T Q Q

T Q

ˆ 1

2
ˆ ˆ 2i ˆ ,

ˆ ˆ i ˆ ,

ˆ 3

2
ˆ . (3.16)

2 2 11 22 12

2 1 13 23

20 33

= − ±

= ∓ ±

=

±

±

In this case, the nondiagonal elements of this symmetric
tensor are Q̂12 6λ= , Q̂13 1λ= and Q̂23 4λ= , whereas the
diagonal ones can be expressed as

Q Q Q Q Qˆ ˆ 2 , 2 ˆ ˆ ˆ 2 3 , (3.17)11 22 3 23 11 33 8λ λ− = − − =

where ( , )3 8λ λ is just the Cartan subalgebra (Rowe
et al 1989).

The decomposition in terms of SU(2) multipoles is
known as the irreducible embedding of SU(2) in SU(3) and
has been widely employed in nuclear physics (Dalitz 1952,
Ward 1982). In optics, this was first noticed by (Carozzi
et al 2000) and later on its physical meaning was elucidated
from different perspectives (Dennis 2004, Petrov 2008,
Sheppard 2014). The dipole terms are precisely E EIm i j

*〈 〉, so
they measure the strength of two of the oscillating fields in
antiphase, as two distinguishable sources in antiphase con-
stitute a dipole. The three components n n n( , , )6 4 1 of the
quadrupole correspond to E ERe i j

*〈 〉 and measure the
strength of two of the oscillating fields in phase: now two
distinguishable sources oscillating in phase generate a field
with a quadropole component.
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4. Concluding remarks

We have explored the use of Wigner functions to depict the
behavior of 2D and 3D polarizations. Although this has been
mostly considered as a quantum tool, it has proven to be also
quite an efficient approach to deal with classical fields.
Especially, in the 3D case, we have tailored an efficient
procedure to represent state on the sphere. We hope that this
analysis clarifies the discussion on 3D polarization in the
literature.
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