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Abstract
We develop a comprehensive theory of phase for finite-dimensional
quantum systems. The only physical requirement we impose is that phase is
complementary to amplitude. To implement this complementarity we use
the notion of mutually unbiased bases, which exist for dimensions that are
powers of a prime. For a d-dimensional system (qudit) we explicitly
construct d + 1 classes of maximally commuting operators, each one
consisting of d − 1 operators. One of these classes consists of diagonal
operators that represent amplitudes (or inversions). By finite Fourier
transformation, it is mapped onto ladder operators that can be appropriately
interpreted as phase variables. We discuss examples of qubits and qutrits,
and show how these results generalize previous approaches.

Keywords: complementarity, quantum phase, finite quantum systems, finite
Fourier transform

1. Introduction

The standard formalism of quantum optics is usually
introduced in the context of the harmonic oscillator, where
both position and momentum are represented by unbounded
operators with eigenvalues in the real numbers. On the other
hand, systems living in a finite-dimensional Hilbert space were
studied originally by Weyl [1] and also by Schwinger [2], but
except for some relevant exceptions (for a complete review
see [3]), they received the attention they rightly deserve only
after becoming an essential ingredient in the development of
the emerging field of quantum information [4, 5]. Indeed,
the promise of futuristic technologies like safe cryptography
and new ‘supercomputers’, capable of handling otherwise
intractable problems, relies on the ability to control the
quantum states of a small number of qubits [6, 7].

In the modern parlance of quantum information the
concept of phase for a d-dimensional system (or qudit) is
ubiquitous. However, in spite of being a primitive of the theory,
this notion is rather imprecise and, roughly speaking, three
quite distinct conceptions can be discerned.

In the first, phase is considered as a parameter and the
problem is reduced to the optimal estimation of the value
of the phase shift undergone by the qudit under quantum
operations [8]. Although very operational in style, it
accommodates perfectly the practical requirements of typical
applications handled in quantum information.

In the second, a semiclassical approach is adopted: the
phase is assumed to be linked to the geometry of the state
space. For example, for a qubit this space is the Poincaré
sphere and the phase is identified with the angle that the
state representative makes with the Z axis [9]. This pictorial
understanding of phase as an angle makes intuitive contact with
the classical world, but once more merely considers the phase
as a state parameter instead of a full quantum variable.

The third major concept emphasizes the idea that phase is
a physical property and, by any orthodox picture of quantum
mechanics, must be associated with a self-adjoint operator (or
at least with a family of positive operator-valued measures).
In this vein, phase operators have been constructed via a polar
decomposition for qubits and qutrits [10].
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The main goal of this paper is to look at the fundamental
problem of properly defining phase from quite a different
perspective. On closer examination, one immediately
discovers that the idea of complementarity is at the root
of all the previous approaches: phase is complementary
to some amplitude, by which we loosely mean that the
precise knowledge of one implies that all possible outcomes
of the other are equally probable [11]. This idea of
unbiasedness leads directly to introducing mutually unbiased
bases (MUBs) [12], which, for a variety of reasons, are
becoming an important tool in quantum optics [13]. It is known
that the maximum number of such bases cannot be greater than
d + 1 and that this limit is certainly reached if d is a power of a
prime [14]. It is not known whether there are nonprime-power
values of d for which this bound is attained. We shall not
be concerned with this problem in this paper, and assume for
simplicity that we are always working in a prime dimension.

It is essential to recall that complementarity for the
position–momentum pair is implemented by the Fourier
transformation, which exchanges both operators. Using the
ideas introduced in [15], we construct d + 1 disjoint classes of
maximally commuting unitary matrices (each set having d −1
operators). We then note that one of these classes consists
solely of diagonal operators (which we can relate to inversions)
that can be mapped, using the finite Fourier transform, to
operators acting cyclically on basis states.

This perspective leads to a natural notion of phases as
complementary to inversions. The advantage of this approach
is that it does not rely on polar decompositions or semiclassical
arguments and provides a clear understanding of the behaviour
of such basic variables.

2. Multicomplementary operators for
finite-dimensional quantum systems

The objects we study in this paper are quantum systems
described in a d-dimensional Hilbert space Hd . We recall [12]
that two different orthonormal bases A and B are said to be
mutually unbiased if a system prepared in an eigenstate of
any element of A (such as |a〉) has a uniform probability
distribution of being found in any element of B,

|〈a|b〉|2 = 1

d
, (2.1)

for all a ∈ A and all b ∈ B. As anticipated in the introduction,
we shall be concerned solely in cases where d is a prime
number, as then we know that there are d + 1 MUBs. For
dimensions which are powers of a prime the argument can be
easily extended with some modifications [16].

If |n〉 (n = 0, . . . , d − 1) is the standard (computational)
basis in Hd , we introduce the generalized Pauli matrices X and
Z via the following action:

X |n〉 = |n + 1〉,
Z |n〉 = ωn|n〉, (2.2)

where
ω = exp(2π i/d). (2.3)

Note that throughout this paper addition and multiplication
must be understood mod d. These operators X and Z , which

are generalizations of the Pauli matrices, were studied by
Patera and Zassenhaus [17] in a purely mathematical context,
and have been used recently by many authors in a variety of
applications [18]. Under multiplication, they generate a finite
subgroup of SU (d), known as the generalized Pauli group,
and obey the finite-dimensional version of the Weyl form of
the commutation relations:

Z X = ωX Z . (2.4)

It is easily shown that the eigenvectors of X and those of Z
satisfy (2.1).

To simplify as much as possible the following
computation, we introduce the following labelling scheme: let

X0 = Z , Xk = X Zk−1, k = 1, . . . , d. (2.5)

Since we shall also need powers of these operators, we denote
by CXk the set

CXk = {Xk,X
2
k, . . . ,X

d−1
k }. (2.6)

The d −1 operators in the class CXk clearly commute one with
another and therefore represent a maximal set of commuting
operators.

Following the ideas of [15], consider now the following
set (each containing d + 1 operators):

S = {X0,X1, . . . ,Xd}
= {Z , X, X Z , . . . , X Zd−1}. (2.7)

By virtue of the relation (2.4), any two operators in this set are
complementary, in the sense that their eigenvectors satisfy the
unbiasedness condition (2.1). Furthermore, a complete MUB
is obtained by constructing every eigenvector of every element
in S , so we refer to S as a maximal set of multicomplementary
operators.

In the case of the standard position–momentum
complementary variables, their eigenvectors form bases related
by the Fourier transform. The finite-dimensional Fourier
transform is defined as [3]

F = 1√
d

d−1∑

n,n′=0

ωnn′ |n〉〈n′|, (2.8)

with the properties

F F† = F† F = 1, F4 = 1. (2.9)

Using this definition one can check that X and Z are indeed
Fourier pairs:

X = F† Z F. (2.10)

There exists also an operator V that effects the transformation
X �→ X Z . It has a diagonal form:

V =
d−1∑

n=0

ω−(n2−n)(d+1)/2|n〉〈n|, (2.11)

so
X Zk = V †k XV k, (2.12)

where we have assumed an odd-prime dimension (the case
d = 2 needs minor modifications, as we shall see in the next
section).
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In physical applications, only d − 1 populations can vary
independently in a d-level system. In consequence, it is
usual to work with d − 1 traceless operators h j that measure
population inversions between the corresponding levels, i.e.,

h j = S j j − S j+1 j+1, (2.13)

where
Si j = |i〉〈 j |. (2.14)

These h j (usually known as the Cartan–Weyl generators)
constitute a maximal Abelian subalgebra. Note that the
diagonal operators in the class CX0 = {Zk} are linear
combinations of h j , so they can be used interchangeably.

On physical grounds, we expect phases to be
complementary to inversions. But inversions are invariant
under phase shifts: if

U (ϕ) = exp

(
−i

∑

j

ϕ j h j

)
, (2.15)

where ϕ denotes (ϕ1, . . . , ϕd−1), then

U †(ϕ)hkU (ϕ) = hk. (2.16)

Thus, we can construct a continuous family of operators, all
complementary to inversions, by conjugating any operator in
the class CXk by means of U (ϕ). In particular, the diagonal
operator V , which maps X to X Zk as per equation (2.12)
(and that is also of the form (2.15) for a definite choice
of the parameters), allows us to construct any Xk starting
with X1 = X . For this reason, and without any loss of
generality, we shall henceforth focus on the elements of the
class CX1 = {X, X2, . . . , Xd−1} to discuss general properties
of complementary phase operators. We thus define d − 1
families of operators representing the exponential of the phase
via

Ek(ϕ) = U †(ϕ)XkU (ϕ), k = 1, . . . , d − 1, (2.17)

obtained by taking successive powers of E(ϕ).
If |s〉 is an eigenstate of h j with eigenvalue h js , then

the expectation value of Ek(ϕ) on an arbitrary state |ψ〉 =∑
s cs|s〉 is simply

〈Ek(ϕ)〉 =
∑

s

c∗
s+k csU

∗
s+k(ϕ)Us(ϕ), (2.18)

where

Us(ϕ) = exp

(
−i

∑

j

ϕ j h js

)
. (2.19)

This allows us to introduce an operator kernel

�(ϕ) = 1

(2π)d−1

[
1I +

d−1∑

k=1

〈Ek(ϕ)〉∗ Xk

]
, (2.20)

which is properly normalized and generates all the moments
through the relation

〈E �(ϕ)〉 = (2π)d−1

d
Tr[�(ϕ)X �], (2.21)

so the phase distribution is obtained as

P(ϕ) = 1

(2π)d−1

(
1 +

d−1∑

k=1

〈Ek(ϕ)〉∗〈Xk〉
)
. (2.22)

We note in passing that any positive operator-valued measure
of the general form

�(ϕ) = 1

(2π)d−1

[
1I +

d−1∑

k=1

γk Ek(ϕ)

]
, (2.23)

which can be associated with (2.22), satisfies the conditions
of real valuedness, positivity and normalization and possesses
the obvious property

eiϕ′
j h j�(ϕ1, . . . , ϕd−1)e

−iϕ′
j h j

= �(ϕ1, . . . , ϕ j + ϕ′
j , . . . , ϕd−1), (2.24)

which meets the usual requirements of complementarity [19].

3. Application: quantum phase for
finite-dimensional systems

3.1. The case of qubits

To fully appreciate the details of the method, we shall work
out some relevant examples. First, we focus on the simple
case of a two-dimensional Hilbert space H2, and a state space
that coincides with the sphere S2.

The basic operators are the standard Pauli matrices

X = 2σx =
(

0 1
1 0

)
, Z = 2σz =

(
1 0
0 −1

)
, (3.1)

such that
σxσz = −σzσx . (3.2)

The transformation σz �→ σx is accomplished by using the
finite Fourier transform

F = 1√
2

(
1 1
1 −1

)
. (3.3)

However, it is impossible to find a unitary transformation V
such that σx �→ σxσz . For this reason, instead of σxσz the
matrix σy = iσxσz is used, in such a way that σy = V †σx V ,
where V is the unitary operator

V =
(

1 0
0 −i

)
. (3.4)

Let 
A describe an arbitrary point on the Bloch
sphere S2 in a direction parametrized by n = (cos ϕA sinϑA,

sin ϕA sin ϑA, cosϑA). Define A to be

A = nA · σ = R(ϑA, ϕA)σz R−1(ϑA, ϕA), (3.5)

with

R(ϑ, ϕ) = exp
[
ϑ

2
(cosϕ σx − sin ϕ σy)

]
. (3.6)

The condition of complementarity between A and a generic
operator B (expressed also as in (3.5)) can be written as [20]

nA · nB = 0; (3.7)
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that is, the subspace spanned in S2 by nA is orthogonal to
that spanned by nB . We have then a one-parameter set of
complementary operators of the general form

B = nB · σ, (3.8)

where the unit vector nB satisfies (3.7), which can be recast as

cot ϑB = − tanϑA cos(ϕB − ϕA). (3.9)

In particular, the set complementary to the inversionσz consists
of the one-parameter family

E(ϕ) = cosϕ σx − sin ϕ σy =
(

0 eiϕ

e−iϕ 0

)
, (3.10)

where ϕ represents a reference or fiducial phase. This in fact
agrees with the exponential of the phase operator obtained via
a polar decomposition [10].

According to the approach developed in this paper, we
have now one family of phase operators that can be constructed
as

E(ϕ) = exp(iϕσz/2)σx exp(−iϕσz/2). (3.11)

This coincides also with (3.10), and can be expressed in the
suggestive form

E(ϕ) = e(ϕ)t Fσ, (3.12)

where F is given in (3.3), t denotes the transpose and

e(ϕ) = 1√
2

(
e−iϕ

eiϕ

)
, σ =

(
σx

σxσz

)
. (3.13)

This result confirms the complementary character of E(ϕ)
obtained via Fourier transformation. For a pure state like

|ψ〉 =
(

cos(ϑ/2)
sin(ϑ/2)eiχ

)
, (3.14)

with 0 � ϑ � π , 0 � χ � 2π , the average value of E(ϕ) is

〈E(ϕ)〉 = sinϑ cos(χ + ϕ). (3.15)

The main features of this description are obviously
independent of the reference phase ϕ, which is usually fixed
to the value 0.

3.2. The case of qutrits

For a three-dimensional Hilbert space H3 the basic operators
are

X =
( 0 0 1

1 0 0
0 1 0

)
, Z =

( 1 0 0
0 ω 0
0 0 ω2

)
, (3.16)

with ω = exp(2π i/3). We have four classes of disjoint
traceless operators, each containing two commuting operators:

CX0 = {Z , Z2}, CX1 = {X, X2},
CX2 = {X Z , (X Z)2}, CX3 = {X Z2, (X Z2)2}.

(3.17)

The discrete Fourier transform is

F = 1√
3

( 1 1 1
1 ω ω2

1 ω2 ω

)
, (3.18)

and V is the diagonal unitary matrix

V =
( 1 0 0

0 1 0
0 0 ω2

)
. (3.19)

We have now two Cartan operators, each associated with
the independent inversions

h1 =
( 1 0 0

0 −1 0
0 0 0

)
, h2 =

( 0 0 0
0 1 0
0 0 −1

)
, (3.20)

which can be easily expressed as linear combinations of Z and
Z2. Note that X and X2 correspond to two different physical
situations: in the computational basis X acts as X |n〉 = |n+1〉,
while X2|n〉 = |n + 2〉.

Thus, we have two families of commuting phase operators:

E(ϕ1, ϕ2) = ei(ϕ1h1+ϕ2h2)Xe−i(ϕ1h1+ϕ2h2)

E2(ϕ1, ϕ2) = ei(ϕ1h1+ϕ2h2)X2e−i(ϕ1h1+ϕ2h2).
(3.21)

In this particular case, E and E2 essentially coincide because
E2(ϕ1, ϕ2) = E†(ϕ1, ϕ2). The phase operator E(ϕ1, ϕ2) can
be represented in a form similar to (3.12), namely as

E(ϕ1, ϕ2) = e(ϕ1, ϕ2)
t F X, (3.22)

with

e(ϕ1, ϕ2) = 1√
3

( ei(ϕ2−2ϕ1)

ei(ϕ1+ϕ2)

ei(ϕ1−2ϕ2)

)
, X =

( X
X Z
X Z2

)
.

(3.23)
Its explicit form is

E(ϕ1, ϕ2) =
( 0 0 ei(ϕ1+ϕ2)

e−i(2ϕ1−ϕ2) 0 0
0 ei(ϕ1−2ϕ2) 0

)
, (3.24)

where again ϕ1 and ϕ2 are reference phases. The average value
of E(ϕ1, ϕ2) in an arbitrary pure state such as

|ψ〉 =
( cos(ϑ/2)

sin(ϑ/2) cos(ξ/2)eiχ1

sin(ϑ/2) sin(ξ/2)eiχ2

)
, (3.25)

is simply

〈E(ϕ1, ϕ2)〉 = 1
2 sin2(ϑ/2) sin ξ ei[(χ1−χ2)+(ϕ1−2ϕ2)]

+ 1
2 sin ϑ{sin(ξ/2)ei[χ2 +(ϕ1+ϕ2)]

+ cos(ξ/2)e−i[χ1 +(2ϕ1−ϕ2)]}. (3.26)

We observe that when only two levels are involved, ξ = 0,

〈E(ϕ1, ϕ2)〉 = 1
2 sinϑ e−i[χ1+(2ϕ1−ϕ2)], (3.27)

which measures the relative phase of the basis states |1〉 and |2〉,
and depends only on a single effective phase 2ϕ1 − ϕ2. Since
E2(ϕ1, ϕ2) = E†(ϕ1, ϕ2), which includes all the possible
moments, the phase distribution (2.22) remains constant in the
direction 2ϕ1 − ϕ2 = constant.

It is instructive to compare our construction of phase
operators with the more common algorithm, based on the polar
decomposition of S12, S23, and S13, defined in equation (2.14).
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The polar decomposition of S ji implicitly focuses of the i → j
transition, without analysing the role of the third ‘spectator’
state of the system. This observation can be used to explain
the lack of uniqueness in the polar decomposition of singular
operators like S12, for instance. This approach produces a
phase operator E12 of the form

E12 =
( 0 1 0

x 0 y
y∗ 0 −x∗

)
, |x |2 + |y|2 = 1, (3.28)

where S12 = E12 R12 and R12 = √
S12S21 is the ‘modulus’.

The only constraints on E12 are imposed by the requirement
of unitarity.

A particular solution to (3.28) is obtained by ‘isolating’
the third state from the first two by choosing y = 0 and thus
x = eiϕ12 . Since (S12, S21, h1) span an su(2) subalgebra, this
choice amounts to limiting the action of the phase operator E12

to a specified su(2) subspace. A similar argument holds for
E23, with (S23, S32, h2) spanning another su(2) subalgebra.

This perspective in terms of polar decomposition and
transitions leads to phase operators that fulfil the requirements
of complementarity only for that between pairs of states
involved in each transition. The corresponding positive
operator-valued measure obtained in this construction is still
of the general form found in (2.23). However, this restricted
point of view is to be contrasted with the approach of this
paper, where complementarity is imposed for the three-level
system as a whole. It is obvious from the explicit forms (3.24)
and (3.28) that they give quite different results.

4. Concluding remarks

Mutually unbiased bases are a primitive of quantum theory,
as they embody the importance of the superposition principle.
In this paper we have used them to develop a comprehensive
quantum theory of the phases as complementary to inversions
in finite-dimensional systems.

The construction presented in this paper is devoid of
any ambiguity associated with the non-uniqueness of polar
decomposition of ladder operators. In prime dimensions,
phase operators and inversions are elegantly related by a
finite Fourier transform, much like positions and momenta
are related by an ordinary Fourier transform in infinite-
dimensional systems, and this provides an appealing way of
treating a concept as central as the phases of a system.
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