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We obtain a new family of coherent state representations ohS(), in which

the coherent states are Wigner functions over a subgroup afi- SW). For repre-
sentations of SU{+1) of the type(\, 0, 0,..), the basis functions are simple
products ofn exponential. The corresponding coherent state representations of the
algebra suf+1) are also obtained, and provide a polar decomposition afi su(
+1) for anyn+1. The sufi+1) modules thus obtained are useful in understand-
ing contractions of su(+1) and suf+1)-phase states of quantum optics.

© 2002 American Institute of Physic§DOI: 10.1063/1.1479301

I. INTRODUCTION

In this paper, we wish to present a new kind of coherent stiastruction for the groups
SU(n+1). The construction is applicable to unitary irreducible representationsreps of
SU(n+1) characterized by integral highest weights of the typge0,..) for which there is no
weight multiplicity, described by Young tableaux having a single row.

Our coherent states differ from the usual coherent states in that our basis functions are
functions over a subgroup of SU(n+ 1) rather than polynomials in holomorphic variables.
Because there is no multiplicity of weights in Stf 1) unirreps of the typé\, 0,..), we can
chooset to be the Cartan subgroup of StUf 1). Basis functions for our modules are simple
products ofn exponential factors, and are closely related to the SHSP(3) construction of
Ref. 2.

The realization of su{+ 1) that we obtain is particularly well-suited for a discussion of polar
decompositions of sm-+1) generators. We consider as an application a study of phasetates,
and, in particular, of S(2) and SU3) phase states. The general case can be inferred from the
discussion of the S(3) case and from the results of Sec. lll.

Coherent states are also useful in understanding the “semiclassical” behavior of sy€ems.
construction can also be used to understand some of the possible asymptotic limits of quantum
systems. For SU(+1) unirreps of the typd\, 0,..), which are applicable ton+ 1)-channel
interferometry? the asymptotic limit corresponds to taking the numbefusipolarized photonsx
to be arbitrarily large. The parameters which enter in the explicit realization of the+sLi
generators will be related to the partition ofphotons between+1 channels.

The construction is presented first for @Uin Sec. Il. The general construction, valid for the
irreps(\, 0,..) of SU(n+1) is presented in Sec. lll. Section IV contains an application t¢3gU
of the general formalism. Our paper ends with a discussion containing further results and a short
conclusion.
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Il. SU(2)

A. Coherent state representation of the su  (2) algebra

A basis forA;, the complex extension of the (@) algebra, is given in the usual way, by the
three operatorgh, &, ,&_} with nonzero commutation relations

[hy8.]=+28., [&. .2 ]=h;. )

For \ any positive integer, a highest weidht, ) for an irrep of dimension + 1 (the numben is
just twice the spin of the representatias defined by

hilx)=Ax), AeZb, & x)=0. @

Now it can be verified explicitly that the mdp

- . d
hl'ﬁr(hl)__|@,

1 . . d
é+HF(é+)=—§e2"”(tanﬁ)‘l )\+|£), ©)]
2 (& — 1 —2ig H d)

&_— (e,)——ze (tanB) )\—I@,

preserves the commutation relations of3wand is therefore a realization &f;. A carrier space
for this representation is the span of exponential functj@?¥, v=—\,—\+2,....A—2,A}. The
highest and lowest weight state proportionaktd’ ande™'*?, respectively.

To obtain Eq(3), one first chooses some fixed but otherwise arbittgenerig angles in the

range 6<8<2. With 3 fixed, the stat&R(8)|x,), whereR (B)=e®+ "85 R (¢)=e*M, is
cyclic under the action oRz‘l(@). Ry(ﬂ)|xx) then acts as a fiducial vector “translated” by

R; '(¢).
Let |¢) be an arbitrary state in the irrep with highest weightand define the coherent state
wave function for|¢) by

[ = g(@) =Ry (BIR( @) ). 4

Since(x,|&_=0, it is convenient to writdR, () in antinormal-ordered form, so that, ignoring
a normalization and a phase factor,

U(0)= Ry (BIRA @) [ #) (X2 [€="P2+ Ry )| ). 5
The coherent state realizatidi(X) of an operat0r5( in su2) is defined by
X|9)—=[T()#15(0)=(xo| €= Ry(@) X[ ). (6)

Using RZ((p)=eXpQQDF11), it follows immediately from this that

" R d
hy—T'(hy)=—i @, (7)
since
T(hy) 5 0) = (x,| €27 R () hy| ). ®)
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If X=@. , we then have

[T(20)¥51(0)=(xn|€2PER(@)2.| ) =52¢( x,| P22, R (¢)| ). 9)

The step which differentiates ours from the usual construction is to exparas

e, :Xie—tanﬁégéietanﬁ&r+yte—tanﬁé+ﬁletanﬁé+_l_ziﬁl, (10)
wherex.., y., andz.. are coefficients to be determined. This expansion is always possible since
e. is a traceless $8) matrix and can therefore always be expanded in terms three linearly
independent traceless matricesAR.

Before solving for the coefficients in E¢LO), it is worth observing that, once substituted in
Eqg. (9), one obtains the simpler expression

[T(20)¥sl(@)=e"2¢(y . (x,|N1€BP& R ()| 9h) + 2. (X, |€2"PE+R (@) Ay | )

_e,2l<p

NY:—ize g )l/f,g() (11

where Eq.(7), (x,|h1=N{x,| and(x,|é_=0 have been used.

Although they will depend on the paramej@rthe coefficients/. andz.. cannot depend on
the particular choice of representation used to compute them, as long as the representation is
faithful: if they did, commutation relations which would hold in a representation would not
necessarily hold in another. Thus, one can compute these coefficients in the defiringe@re-
sentation, where

(o1,  JooO : 1 0 ange (1 1@NB
“Zlo o) 7M1 o) ™7lo —1)0 T lo 1 ) (12
For X=2&, , Eq.(10) yields the matrix system
0 1 —tanB —tarf g 1 2tang 1 0
= + :
0 o 1 ang |Vt 1 )7%lo -1 (13

It is immediately possible to solve fot, , as it multiplies the only matrix with a nonzero
entry below the diagonal. Knowing, , it is then easy to solve foy, andz,. The solution is
simplyy, = —z, = 3(tanB) ! so that the final expression fé{(&,) corresponds to that given in
Eq. (3). Repeating the steps fér_ yieldsx_=1 andy_=—z_=3tang so thatI'(2_) has the
form given in Eq.(3).

B. Basis functions

First, we claim that the set of statfiR, ((p)R YB)xn), R, () e U(1), Bfixed;, obtained
by U(1) rotation of the stat&®, (,8)|X)\> through aII possible anglqa, spans the carrier spavg
for an irrep of SUW2) with hlghest weight. To show this, recall tha¥, is generated frony, ) by
repeated action of the lowering operator. Now,

—2i<pé,|

R, M(@)R, (B)]xn)*R; *(@)e™e-| x, ) el xehe (14)

by using the normal form 06 A(®+~2-) This can be seen to indeed generate the whol¥,of
(provided that ta+0, which is our assumption abogtbeing generig
Thus, to any stat@)) in V, there corresponds a unique coherent state wave function

[ = a(@) = IRy(BIR,( )| 4), (19
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which belongs to the set of () square-integrable functions. In particular, the basis functiors
are given by, ,(¢)=(x\|Ry(B)|Av)e'"® and must be proportional to the only normalized
function on the half-circle with weight:

1 .
lﬁﬂ;m(‘P)“\/—;e'w- (16)

Note that we can restrict to the half circle because the difference of two weights in an invariant
subspace is always an even integer.

C. Making the representation Hermitian

The representation of ) given in Eq.(3) is not Hermitian with respect to the natura(1y

inner product. If, as usual, the adjoint &f is taken as_, i.e.,&l =&_, then

(AT (@) w)# (N p|T (@) N o) (17

(Wal )= f O”d¢ V(@) Wi(0). (18)

However, since\ is integral, the representatidh must be equivalent to a Hermitian repre-
sentationy, i.e., there must exist an intertwining operatorsuch that

K IrK=1y, with (\v'[y(@)Nv)y=(\v|y(@_)|]\v')*. (19

To construct the operatdt, note thaﬂ“(ﬁl) is actually Hermitian in the representation of E8),
so thatk~'T'(h,) K=T'(hy) = y(h,). Thus, K commutes with['(h;) and weight eigenstates of
I'(h,) are also weight eigenstates &f Let

hohv)y=vAv), KINv)=K,|Av). (20

Using Eq.(19), the Hermiticity condition reads

1 v 1 K::+2
e - — = e * —
(N, v+2|y(8,)|\v) Ztanﬂ()\ V)ICV+2 (Nv|y(8 )\, v+2) 2tan,8()\+y+2) ic*
(21)

from which we conclude that the ratio &f,, ,//C, must satisfy, up to a phase that we choose to

be +1,
’CV+2_ 1 )\_V 22
K, tang VA+v+2 22

so thaty is indeed Hermitian and given explicitly by

()\,v+2|'y(é+)|)\v)=%\/()\+ v+2)(N—v)=(\v|y(& )|\, v+2). (23

D. Application: Phase operators and phase states

Any matrix M can be factorized in polar formd - D, with U a unitary matrix andD a
semipositive definite diagonal matfixThe operatoD is always well-defined. The unitary matrix
U is the exponential of a Hermitian “phase” operator associated with the phase of the observable
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described by the matri¥. The problems of constructing a phase operator in a finite or semi-
infinite dimensional space are related to the lack of uniqueness in the definitibwbich occurs
when the rank oM is smaller than its dimension.

Our realizationl” acts in a natural way in the infinite dimensional irreducible space spanned
by the set of W1) functions (phase functionsV,,={e'®**2¢/\[m pe 7}, where o is the
“duality” of the representation:o,=0 for bosons andr,=1 for fermions. Furthermore, the
realizationI” of &, or &_ can obviously be factored as a product of two operators. One may easily
show that the “diagonal” part of the decomposition B{é..) obtained, to within a sign, from
VI(eL)T(e.).

We are primarily interested in the matrix representation of the opet%!;elerez“”. In the
infinite-dimensional spac¥,,,, the matrix representation cﬁ‘p contains zeroes everywhere, ex-
cept immediately above the diagonﬁl,, is unitary with respect to the inner product of Ed8).
Since[I'(hy),E,]=E, ,E, is the exponential of an Hermitian “phase” operator that is conjugate
to h;.

The eigenstates (ﬁq,, known as phase statésyre labeled by the continuous varialsleand
given by

s

6.)= pZ_ eiProdte)  E

0.y=e"2%9.). (24)

To obtain a finite dimensional Hermitian representation ¢2swe project fromV(,2 a finite
dimensional subspadé* spanned by an appropriate subset of exponential functions. Ruage
already observed that the appropriate projection operator is the intertwining opE€ratoEq.

(19). Sincek,=0 for|v|>\, K isolates from the set of all (1) functions{e'P¢,p=—c,...,»} a

subset of pertinent functions which form a basis for gsical SUY2) subspacdor the repre-
sentation/C also adjusts the matrix elements of the various generators of the algebra so as to make
v Hermitian. Thus, the expression of in terms of an intertwining operator which acts as a
projector ties in nicely with the work by Popov and collaboratdon phase operators in a finite
dimensional subspace.

The restriction ofEP to the finite-dimensional spacé" is no longer unitary: the highest

weight is annihilated b, so thatE, is now nilpotent, with the last line of its matrix represen-
tation containing only zeroes:

0 1 O
0O 1 O
E.=| : PR R (25)
1
0 0 0

We would like to transfornqu, into a unitary matrix, but that transformation is not unique, as the
rank of the matrix representation g{&..) in V* is less than the dimension of this matrix. It is

nevertheless possible to obtain a unitary operator closely relatﬁg tdhe choice

0O 1 O
0 1 O
Ex(d)=| : oL (26)
1
et 0 .. 0
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will produce a unitary matrix with determinaeté. The factoré is related to the phase of the
vacuum state, which cannot be determined.

Vourda$ has done an extensive analysis of the case wher@, which amounts to imposing
a cyclic boundary condition by identifying\ ,\ +2)~|\,—\). The case of general does not
differ significantly from this particular case whefe=0: the eigenvalues and eigenvectors of the
matrix of Eq.(26) are simply shifted by inessential phase factors. Thus, we&-=s& and define

E;=E;(0), (27)

so that def;)=1. The notation indicates thdi; is the exponential of a Hermitian “phase”
operatorg.

Phase states in the finite dimensional subspécare eigenstates &, . They are obtained by
restricting the sum in Eq24) to those values of that correspond to states occurring in th€2su
irrep with highest weighh:

IN; 6y )= > e‘V9A|)\V>:Sin(()\+1)(@+ o))

. = +
TP SN+ 0 , 6=27/(\t1), (28

using|Av)—€'¢. The statg\;6,) behaves like a periodié function as\—c, in accordance
with the requirement of Ref. 5.

E. Application: Asymptotic SU  (2) Wigner function

Let \—o0 and setvy=\ cos 28, i.e., set cosB=1y/\ to its “classical value.” Then
Kyyp+2 (N vgtpt2) 1+cos28
lim ——— = lim tan ——— =tan ——————=1+0(p/\). 29
M K AR TR g p) @ Vi cosg” HHOPY (29

For finite values of, we can therefore solve fal@vO+p ask, +p=1. For finitep, the operatorg..
are now represented by

y(&,)— — $e?®\(1-cos 28)cotanB= — 1 \e?¢sin 28,
(30

y(&_)—— e 2\ (1+cos28)tanB=— 1 Ne ?¢sin 2B,

and, in particular, we haVQ/(Ly)Zi(’y(é+)— v(8_))=Asin28sin2p. The reduced S(2)-
Wigner function,(\ v|exp( 0|:y)|)\v'>, can therefore be written, in the limit, as

lim (Z\, 2 (vo+p)|expio(y(&:)— y(&-)))| 2\, z(vo+a))

Ao

1 (7. o _
—);J'O el ((1/2)(p—a))2¢gi OX sin 28 sin 2(pd(P

=Jp—q((—\sin2B)0), @31

whereJ, is a Bessel function and we have used an integral expressiah, fimund in Ref. 11.
This result has been further investigated in Ref. 12.
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Ill. GENERALIZATION TO SU (N+1) IRREPS OF TYPE (A, 0,...)

A. Algebraic formulation

In this section we generalize the above-mentioned construction to obtain a representation of
su(n+1) on then-torus. We start by going to the complex extension af-t@), spanned by the

(n+1)? operators{éij ,i,j=1,...n+1} which satisfy the commutation relations
[éij ,ékl]:5jkéi|—5i|ékj- (32

The complex extension of saf-1) is obtained by selecting from the above set the operﬁqr,s
i#j andh,, where

ﬁk:ékk_ék+l,k+l! k=1,...n. (33)

Let h be the Cartan subalgebragt sl(n+ 1,C) consisting of diagonal matrices. Let, 0, ..)
be a dominant integral weigltwith respect tay) and|y,) the highest weight vector of a repre-
sentation on the spacé which has only trivial weight multiplicities. Let be the stabilizer
subalgebra of y,|, i.e.,

s={seg st. (xa|s=a(s)(xl}, (34

where «(s) e C. Note that the Cartan subalgebra s.
Choose and fix a generic elemeanin SL(n+1,C) and construct another “twisted” copy of
the Cartan subalgebghg 1. The only condition org must be that

g=s+ghg 7, (35

i.e., it must be possible to expand an arbitrary elemerngt & a sum of an element inand an
element inghg 1. The coherent state representation of an operfé@g is then defined by

F(X)yg(k=(x\lgkXy), keH. (36)

Since H is just ann-dimensional torus, the group elemdnt H is parametrized byr angles

®1,..-,¢n @S iNk=exp(Z, (ppﬁp), wherep runs fromp=1,...n. We will abuse the notation and
write the coherent state as a function @[ ¢,,...,¢,]. With this notation we find that, for

5(=F‘|keh,

" J

F(hk):_|0—‘_¢k- 37

If X=C;,, €#] so thatX ¢ b, then we have
F(éw)lﬂg(qﬂ):()(ﬂg eXF(iEk(Pkﬁk)éj€|'r//>y
=eXp(i2km}‘e¢k)<Xxlgfi,-e expli S ohy) | )
=exp(i S Mo (Xl (9Ci g™ g expli S ehi) [ 4), (38
wherek runs from 1 ton and where
[Pk ,éje] = m}(eéw: 5kjék€_ 5k+1,jék+l,€_ 5k€éjk+ 5k+1,€éj,k+l (39

for j#k=1,..n+1. With the understanding that,=¢,,,=0, the sumEﬂzlm}}cpk can be
rewritten as

Downloaded 19 Jun 2002 to 216.211.76.195. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



3432 J. Math. Phys., Vol. 43, No. 7, July 2002 H. de Guise and M. Bertola

n

k
kZl My Pk= @~ @j—1— @t @r—1. (40)

In order to complete the description of our coherent state representatjprnvefneed to compute
explicitly, for every (j€), the decomposition

1

€5 eghg
—~— —t— n .
ngggilzfjg“‘gajggil, dj€:k21 dj€hk’ (41)

as per Eq(35). It is simpler(and equivalentto compute
Cie=9g" "85+ dj(. (42
Substitution 0f(42) into Eq. (38) then yields

T'(Cjo) trg( @) = exp(iZmf, o) (x| (3¢9 + dj o) expli Seechi) [ ),
:exqizkmrfﬁokx)()\“éj(g exp(i Skekh) + g exp(iSeh)di)|y).  (43)

It follows therefore that, in accordance with E§7), aje will be a sum of differential operators in
the variablesp, , while the action on the left d;, will yield back (x,| to within a normalization
factor.
Again we observe that the expansion coefficients cannot depend on the choice of representa-
tion, so that we choose to work in the+{1)Xx(n+1) representation wherg,)=(1,0,...,0}.
The computation is further facilitated if we observe that the dependengesactually only up
to left multiplication of S; hence we can writg=S-g, with Se S in the stabilizer subgroup and
g a conveniently chosen coset representativé\@; a different choice of the representatigé
=s-g will produce equivalent representations in which the coherent states are multiplied by a
charactery(s). Then,

éj€:(®_1§j€§+aj€- (44)

If the highest weight vectofy,| is the vector(1, 0,..., 0, then a general elemeét s and coset
representativgy have respective the matrix forms

R y O (1 —v
SH(XI Y)’ gZ(ot 1)’ 49

whereY is annXn complex matrix,x=(X,,Xs,...,.X,+1) IS & complex Xn vector, 0 is the
1Xn null vector,y=—Tr(Y), v=(v,,v3,...,un+1) IS @ complex vector, and is thenXxn unit
matrix. [The matrix form ofg can be compared with E¢12).]

The produciy™ 1&g is a matrix of the form

y+v-X —(y+v-x)v+vY
: (46)

Xt —XV+Y

wherev-x is the usual scalar product aml denotes the outer product so thabv is annxn
matrix.

We therefore seek to match the matrix expressioﬁ:,qfwith the expansion

Y+VX  —(Yy+Vvx)v+vY
x! —X®V+Y

d, (47)
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whered is a diagonal matrixd=diag@*,...d""?) of zero trace.

For every different pair of indiceg (€), j # €, and withv appearing as parametgvhich does
not depend on, ¢), we need to solve the above-given equationyfoY, x, d. These unknowns
depend o, € but, to avoid overburdening the notation, we will keep writinipr y; d for d}‘e ,
etc., until we reach final formulas.

Using the form of8, the highest weight state (1,0,!.3nd Eq.(43), we find that the only
coefficient in that enters in the expression E(ng) isy. The only element i to have nonzero

entry in position(1,1) is h;. As (x,|h;=(x\|\, Eq.(43) simplies to

1ﬂ(éje) :ijexmzkm{f@k)

n
P
N—i D> Z*—, vy Z*=dX 48
gl a<pk) Yie (48)

We divide the straightforward search for the solution into three subcases. It is also useful at
this point to introduce an auxiliary set af+1 vectors in the Cartan Lie-algebba given by

k—1 A n ~ kth-term
p=—2> jhj+2> (n—j+1hj=diag—1,..~1, n ,—1,.~-1), k=1,..n+1, (49
=1 i=k

k—1 n P
I'(p)=—1i j —— n—j+1)—|. 50
(Po==1| 20502 (n=j+1) 5 (50

Note that, forp, .1, there is no contribution from the second sum in Ef).

1. Case 1: C:‘M

Let j=1, c be the vector of components)(= ., k=2,3,...n+1 and write

Cie= 0

0 c
Ot ) 1 (51)

From Eq.(47), x=0, y+d!'=0, andY+d=0; Y is a diagonal matrix with entrieg=Y,,=

—d,
From v(—yl+Y)=c, we find first thatY,, =y for k#¢€, and, using the conditioty,

+Tr(Y)=0, thatY,,= —ny. Finally, from the nonzero componefik of c, one obtains

-1

AT 52

If Eq. (35) is to hold, then we must hauwg,# 0 V{. The matrixd is given by

£th—term

. ~~ i -1

d=diag\ —y,~y,...,=y, Ay ,7Y...,”y = YT, P (53
Therefore we finally have

I'(Cyp)=yye et e\ +T(py)), ylé’:m’ (59

where we have found_ ,mi‘ o =01— @,+ ¢(_1 USINg ¢+ 1=0 and Eq.(40).
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2. Case 2: Cj, 0#], €, j=2
We now write

. 0 O

where €j¢) mn= 6jmJen - Using EQ.(47), x=0 once more, so that+ d'=0. Thus, the diagonal
elements ofY are such tha¥,,+d“=0. The only off-diagonal entry iiY is a 1 in thejth row, £th
column.(For consistency it is convenient to enumerate the entries afi e matrix Y, with j,
k=2,..n+1,) Fromv(—yl+Y)=0, we obtain the equations

(=Y + Y +vj04=0, (56)

from which we conclude that, K+ €, Y,,=y. The coefficienty,, is fixed byy+tr(Y)=0 to be
Y= —ny. Finally, from Eq.(56) with £ =Kk, we conclude that

v
Y= Do; (57)
wherev; #0#v, by assumption. The diagonal mataxs given by
€th—term
d=diag\ —y,~y,....,~y, fn/; 3T Yees ™Y =—yﬁe=—(n+v—{)v€f)e (58)
Summarizing, we find, using E§40),
L (Cj) =y i eim1m et e-D(N+ T (), y”:(n:—i)v[ (59

3. Case 3: Cy, €#1

In this case, the vectod has components;= &;; . Thus, the scalar produetx=v,, and the
equationy+v,+d'=0 gives

dt=—(v,+y). (60)

Fromv(—yl+uv,1+Y)=0, we conclude that

n

(—y—vﬁ)vm+k2 1 Yem=0, m=2,3,.n+1. (61)
=1

NOW, (X®V)pm=XpUm= d¢pvm- Thus, we have
0=—(X&V) pm+ Y pmt "8pm=— Spvm+ Ypm+ d"Spm, mM=2,3,..n+1. (62)
Multiplying Eq. (62) by v, and summing ovep, we obtain

0=2 (= Sepupvm)+ 2 vpYpmt 2 vp0™Spm, M=2,3,..n+1. (63)
p p p

Using Eq.(61) and the fact thab ,# 0, this can be simplified to
O=—-v,+y+ve+d"=y+d™, m=23,..n+1. (64)

Now using the fact thak{* 1 d*=0, we immediately find

Downloaded 19 Jun 2002 to 216.211.76.195. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 43, No. 7, July 2002 Coherent-state realization of su(n-+1) 3435

Uy¢

Y=~ni1 (65)
so that, using Eq(60), we find the matrixd to be
d=diagny,~y,....y)=~Ypr=— —sps. (66)
Hence,
P(Cea) =y 0+ T (), Y=oz, (=201 9,,,=0. (67

B. Evaluating the v, coefficients

The coefficientsv, are related to SUW(+1) Wigner functions as follows. Ifv
=(vq,v5,...,v,.1) denotes an ordered partition ®f i.e., v+ v,+...+ v, 1=\ with »; a non-
negative integer, then the set of stafés}, labeled by different partitions of A, can be chosen
as basis states for the irrép, 0,..., 0 of su(n). These states satisfy

At = (V= v 1) ¥, (68)

and are uniquely identified by the set of eigenvalues of the oper‘é,tors
Next, we needy=g-S, org=S 1g=7g, with S andG matrices of the form

L (w0 a b
S_th'g_CtU

where a=(x,|g|x,) and by=(x\|g|¢, ), with ¢, the highest weight state of the
(n+1)-dimensional defining representatidn 0,..., Q and o k=2,...n+1, the remaining basis
states of this irrep. Thus we have

: (69

1 <X)\|g|¢'vk>

W= ——, =T
Oalghay” ¢ Oalghoy

(70

C. Basis functions

We have already observed that, wilof the form of Eq.(45) andv;#0 V], then @ Hxn
generates the whole representation space. Thus, the gjatd x, ) acts as a cyclic vector for the
irrep with highest weight\, 0, 0,..) under the action of any fixed elemek& H in the Cartan
subgroup. Hence, to every vectgrin the representation space, there corresponds a unique func-
tion on H:

= hg(K)=(xr |9 K ). (71)

The basis state, of (\, 0,..., Q is mapped to the normalized element on th®rus

| eXEIS (1~ s 1) 1)
b QLT )= 0 19, X S s D o TP (7

The highest weight statg, of (\, 0,..., Q is represented by, —>e'¢1/(2m)",
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D. Making the representation Hermitian

States on the torus are naturally normalized with respect to the inner product
1 2@ 27 27 ) , , )
(o lh,)= WJO d@lJO d‘Pz"'fO denexpl =12 (v — v ) @) X2 p(vp— vpi1) @p)

:H 5V1,<7Vk7V|,<+1+Vk+l' (73)
However, with this inner product, the action of the operalbféij), i #j, is not Hermitian:

(o Dl # (o TN C D) = (| T (C) ) (74)
the resulting representation does not exponentiate to a unitary representation of the group. Since
all representations of sof-1) having integral dominant weight are equivalent to Hermitian

representations, there must exist an intertwining operattirat will transformlI” into a Hermitian
representatiory, i.e., there exist&

W Ci)=KT(Ci)K, such that (¢, |¥(Ci)|w,)=(W|v(Ci)lw,)*. (75

We find K by combining Eq(75) with its Hermitian conjugate/"(C;;)=K'T"(C;))(K™ 1T, so
that

Y(Cij)=¥"(C;)=T(C;;))S=8T1(C;), (76)

whereS= KK is a Hermitian operator. Noting that the Cartan eleméptare represented under
the mapl” by operators Hermitian with respect to the inner product of(£8g)., we may takeS to
be diagonal in the weight basi§|,)=S,|#,). Thus, using Eq(76), we obtain the condition

S, YiOtp(r)

(U STHE _ iAoy ) o
<‘//v’|r(cll)8|l;bv> <l//1/ |$I‘I (C]|)|wv>:SV, yu()\"'P](V)) Rv,v ’ (77)
Wherevkz V|;+ 5ik_5jk and
n+1
Pi(V)=<$V|f>i|%>=k§=:1 (Pi)kkVK s (78)

where (p;)k is thekth entry in the diagonal matrig; defined in Eq.(49).

To construct the coefficientS, from the ratios of Eq(77), one starts byarbitrarily) fixing to
+1 the coefficient of the highest weight corresponding to the trivial part{#io, 0,..); changing
this would just changé by an overall multiplicative factor. Noting now th&t= CK' is a positive
Hermitian matrix, the ratidC,//C,, can therefore be obtained, up to a phase, as the square root of
the right-hand side of Eq77). The phase of the ratiky, /X, should be chosen so that the matrix
elements ofy(éij) are real, something that it is always possible to do. In practice, one chooses,
without loss of generality, the elememt G, from whichyj;; is obtained, so that;; is always real.
Assuming therefore thaj is chosen in this way, we haug, always real and

K, yilh+pi(v"))
K, V(AN pj(v) 79
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IV. APPLICATION TO SU (3)

A. Representation on the 2-torus

The sy3) Lie algebra is spanned in the usual way by the subse(3)faperators comprlsmg
the ladder operator$CIl ,i#]j} together with the Cartan generatdng Cn sz h2 sz
—Cas. The {C”} operators satisfy the general commutation relatlcﬁl(l'.sJ ,Ck,]—é)‘JkC”
5I|ij
The highest weight state of the irrép,0) is mapped to the state,0,0)—e1/27. More
generally, a statév,,v,,v3), with v+ v,+v3=X\, is mapped to

ei(Vl— vo)e1ti(vo—v3)e) ei(Vl_ Vo)1 +i(2vp+t vy —N) @y

|V11V2!V3>H 271_ = 277 ] (80)

where the condition; + v,+ v3=\ has been used.
Following the parametrization of Ref. 13 for &) elements, and using the fact that we can
chooseg to be such that the matrix elements are real, we find

1 ot I o
W_COS%,BZ’ V2=C0S; fztany Bz, v3=sing fztan; Bs. (82)

Simple application of Eqg.37), (54), (59), and(67) then yields

I'(hy)=—i ’ I'(hy) ’

:—I—, __I_

' ) 2 dey’
“ -1 J J
(Cp)=———&l@red| N ——j—|,
3 cos3B3tan3f, de1 e’

1 1
. —coszB3tan 5,82 : J 1%
— e (2<P1 <P2) -
(€, 2 S |
3sin3gB; tan%ﬁz <9<P1 5<P2
R —sin3B;tan3A, . J d
= "~ - " “aileiter) i
I'(Csp) 3 N—2i or |(9QD2
~ 1 ) J J
[(C)=—— € (917202 \ 4j— 12 —}
3tan3f; ey e
. tanzBz a a
I'(Csp)= 32 ® gile1-2¢2) )\+I_&<p1_l_(9cpj
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The ratios of L matrix elements required to compute the matrix eIements/(@tij) are
K, IK,, , with vi= v+ §— 8. Usingvy+ v+ v3=N\, they are given explicitly by

Koyvpv IN+pi(v) Smlﬂ tanlﬂ \/A+2(V1+1—V2)+(u2—y3+1)
= =

Ko 1y vs-1 SN Mt psa(v) s N=(vi=v2)=2(v—v3)

o1 1 vi+1 83

=sinz Bstanz B2\ B (83
V Vol A+ 1 +1
1V273 / pa(v ) (V3 1 (84)

AN+po(v) 1 vy
tanzﬂ:;

K:vlvz 1 V3+1

K IN+pr(v) 1 1 [v+1
V1VaV3 p1lv V1
I =v, Nt py(v) —cos§,33 tanE,BZ by (85

vyt 1,V2* l,VS

To obtain the matrix elemeng(C,3), for instance, one computes
<lr/lvl+ l,v2 ,V3—l| 7(613)| ¢Ivl,vz ,V3>
dey [ de, .
f f_eXF[ i(vi—=vo+ D1 —i(v—v3—1)gy]

X (KT (Cr)K)exdi(va— va) o1 +1 (vo— v3) @2],

d d
f ¢1jﬂexq—|(yl V2+1)(,Dl_i(V2_V3_1)(P2]

-1 d 0
ANi—+2i —|K

X —ei(¢1+€02)
Ipy deo

ICV1+ l,vz,vs—l

1/1,1/2,1/3

1
3 smz B3 tani B>

Xexgd —i(vi—vy) @1 +i(va—v3)es]

~1 1 1 o+l
X 1 1 [7\_(’/1_Vz)_z(Vz_Vs)]smzﬂataniﬂz vy

3 sin§ B3 tanz B>

- \(V1+ 1)1/3. (86)

B. Application: the SU (3)—[R®]U(1)? contraction

Consider the limit where.—. Set

1 \2 1 )3 1 \? 1 V3 1 )2
71=)\(cos§,82) , 72=)\(sin§/32) (cosi,é’g) , 73=)\(sin§[32) (Siniﬁg) . (87)

The angles3, and B3 then provide a convenient way to parametrize the distributiox pifiotons
in three modes with modecontaining a large number;, of photons.
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With this, it is readily seen that the values of the ang¥gs 85 for which the representation
I' of Eq. (82) is singular correspond to a distribution such that at least one of the three fields
contains no quanta. Provided tHatis nonsingular, we then have, for valuesofind v' suffi-
ciently close to the average values

14

IlmK/

N—oo/ MY

=1+0O(1/N). (88

The representatioh is then Hermitian; the diagonal operatd}r§andﬁ2 remain unchanged, and
the ladder generators become, in the limit where o,

- ) 1
I'(Cyp)— —2)\e'?17¢2) ging, cos3 s,

R . , 1
['(Cy)— —2Ne 2917 ¢2)5in B, coS3 s,

. . 1
I'(Cy9)— —2)Ne'le1t¢2sing, sin Ba,
(89

A : 1
['(Cg)— —21e (o1t e2sing, cos5 B,

. . 1 \?
F(C23)—>2)\e'(_"’1+2“’2)(sinzﬁz) sinBs,

. . 1 \?
F(C32)—>2)\e'(¢’12‘4’2>( sinzﬁz) singBs.

All the ladder operators commute with one another, and the resultant algdhit]is(1)>2.

C. Application: Phase operators and SU  (3) phase states

The realizatiorl” acts naturally in the irreducible infinite-dimensional space of funct\bpss

where a state |n,m), nmeZ is represented by the function over the 2-torus
In,my—>g!(2n=MerglZm=n=o3)ez/2 Here,o3=0, 1, or 2 is the “triality” of the representation.
We introduce three “phase-like” operators:

E¢12: ei(Z(PJ_*(Pz), E(P23: ei(*QD]_JrZ(,DZ), E¢13: ei(¢1+¢2)_ (90)

InV,., the operatoréq,12 and E% are unitary with respect to the natural inner product over
the 2-torus; they are the exponential of phase operators conjugatetwih,, respectively, since

—E, . (91

®23| ~¢23

-E

¢12'

1 . .
5T(h) E

Note that[ 3T'(h,),E,, 1#0, [3I'(h,),E, ]#0.
The realization of an element @f,, say,I'(C,,) can be expressed as products of a unitary
and a diagonal matrixt'(C;) = —E, @15, whereg;,= VI'(C1)I'(Cy)).
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In the infinite-dimensional spacé,., the unitary operatoréq,12 and E<st commute, and it is

possible to find their common set of eigenvectors. It can be verified that, fofang., states of
the type

|01,02>: 2 ei(2n—m)01ei(2m—n)82|n,m>: E ei(2n—m)(<p1+Hl)ei(Zm—n)(<p2+02)' (92)

nmeZ n,meZ
are the simultaneous elgenstatelfgflz, By and Eops

E¢12| 0,,0,)=e 1201-%)| g, 6.y |“5¢23| 01,0,y =e 101202 g gy

A . (93
E, 01,0,)=e"""" 92(6,,6,).
The stateg6,,6,) are therefore phase states.
Consider now the finite-dimensional subsp%sa{t’:@:V(,3 such thatv* is the carrier space for a
unirrep of highest weigh¢\, 0). This subspace is projected using tkieoperator fromV(,3. In
going from the infinite-dimensional spadf, to the finite-dimensiona¥*, a number of problems
arise in connection with the definition and properties of the phase operators.
We denote the states W by three non-negative integers as per Bf). First, however, we
note that it is not difficult to properly define the radial part of an operator. For instance, the radial

partJdy, of y(Cy,) is found fromJ;,= vy (C1) v(Cyo).

In V*, the restrictions of the operatolE‘spij are nilpotent and therefore no longer unitary. The
rank oqu,” is equal to dimy*) — (A + 1) as there areN+ 1) states annihilated tﬁq,” [one state
in each su(2) subrepresentation occurring in the(3uirrep (A, 0)].

In contrast with the S(2) case, where a single entry ﬁg could be changed so as to obtain
the unitary operatoE;, an arbitrary complex linear combination of the+ 1) states annihilated
by IAE(P”_ yields another state annihilated Eyoij. Thus, we are left with infinitely many ways of

transformingé‘pij into a unitary phase operatEr(;ij, even if we insist that the determinantlég)”
be 1. Furthermore, it can easily be verified that,Xer 2, the restriction ofE‘pij is an operator that
does not necessarily commute with the otfigy 0perators{l§¢ij,ﬁ¢kl]¢0.

We point out that, in the matrix representation[&“plz,lAE(PZB] there are preciselyx entries
which are 1 rather than zero in this commutator. The “faulty” nonzero matrix elements appear in
positions corresponding to matrix elements of the typet+ 1,0p3— 1|I§¢13| v1,0,v3), i.e., matrix

elements involving vacuum states in mode 2: the familiar problems associated with the construc-
tion of unitary phase operators in the presence of vacuum states are still present.

Thus, the number of “faulty” nonzero matrix elements in commutators of the [tﬁg,ﬁ,fz@jk]
will grow like A\, since the number of states having the vacuum in one mode grows. l{Ra the
other hand, the number of states in the irkap 0) grows like A\2. The classical limit where.

— oo corresponds to the limit where the phases commute, provided that we ignore the relatively
small number of “faulty” nonzero matrix elements compared to the number of “correct” zero
matrix elements. This relative number grows lika..1/

In particular, in the interpretation of E¢89), the realizationl’ becomes singular for states
near the vacuum state whan—oo limit. Hence, provided that the distribution of photons in an
input state is such that the vacuum can be safely ignored, phase operators can be considered as
commuting.

A similar result on the lack of commutativity between thtaal and relative s(2) phase
operators in systems containing few photons has been obtained in Ref. 14. These authors found
that commutativity was recovered in the classical limit. Our results are similar to those found in
Ref. 14, albeit applicable to the case of noncommutglgtive phases in a three-beam system.
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The three-dimensional representatid) 0) merits special attention. Besides providing an
illustrative example for our previous discussion, this representation is the only one that allows
commutingunitary phase operators while preserving the polar decomposition.

More precisely, in a system containing a totalof v+ v,+v3=1 quantum, the explicit

matrix realization ofisome of C;; in terms ofIAE(pij -J;; can easily be found:

(IJ) E‘Pi JI] Cijzétpij")ij
0 1 0 0 0 1
1,2 (0 0o ol [0 1 0 00 0}, (94)
0 0 O 0 0 0
0 0 0 0
23 |0 0 1] |0 0 0O 0 0 1],
0 0O 0 1 0 0O
0 0 1 0 0 0 1
(1,3 |0 0 0 00
0 0 O 0 1 0 O

To computeE,, , for instance, one usds, =€'(¢17¢2, e, the “phase” part of'(Cyy), the
basis state$;-e '4’1 e (Te1ted) Leleal and the inner product

27 (27
(\If|d>>=f0 fo de; dg, U* . (95)

The operatoréquj are explicitly not unitary. Wherea&, -E, =E, it is not true that
[E¢12,E¢23]:E¢13: the phase operators do not commute.

There are many ways of turnirlg‘pij into a unitary operatoE;Pij while still preserving the
decomposition oCj; into a phase and a diagonal part. What is unique of(1h@ representation

is that it is also possible to find unitary operatér; such thaIEA | preserves the polar decom-

position of C,J and simultaneously produces commutlng phase opera{t5(§ E%] 0. This
remarkable choice is
0 1 0 0 1 0 0 0 1
E;,= 0 0 1], E,.= 0 0 1], ;.= 1 00 (96)
1 00 1 00 0 1 0

It is not possible to converE _into a unitary operatoE_, b that will have all of the above
enumerated properties when the total number of photons is greater than 1.

This result on the existence of commuting unitary phase operators is expected, as the repre-
sentation(1,0) is pertinent to the classical description of a three-channel interferoiefiar,
which the phases ar@f course expected to commute.
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V. DISCUSSION AND CONCLUSION

In deriving the representatidnacting over the functions defined over the maximal tdfusf
G=SU(n+1), the main hinge is the decomposition of the Lie algebra as pef3aj. This is
equivalent to requiring that the dimension of the subgrdugr, equivalently, the rank of the group
G[i.e.,nin the case of SU{+1)] is exactly of complementary dimension to the stabilizer of the
highest weight state.

The question arises now as to whether there are other representations and/oiQvehiph
allow a similar decomposition. The answer is—unfortunately—no, i.e., we need some extensions
to the above-presented picture in order to accommodate other groups. We discuss why there is
such an obstruction in the Appendix.

The technique adopted in this paper has been limited in scope to unirreps #f-3Ywith
highest weights of the typé\, 0,..). However, it is possible to extend the formalism presented
here to general irreps by suitably enlarging the subgroup over which the coherent states are
defined. Irreps of the typ@\, u, 0,..) are particularly interesting as they can be expected to have
applications to the description of polarized beams. For irreps with highest w@ight 0,..), the
appropriate subgroup of SU(n+1) is S(U(2)XU(1)X...XU(1)): the basis states and the
representatio’ will then be expresséfiin terms of Wigner functions over this subgroup.

The major result of this paper is a realization of thenst() Lie algebralor, more precisely,
of the complex extension of this algelrappropriate for irreps with integral highest weights of
the form(\, 0,..), for which basis functions and generators are expressed in terms of exponential
functions and derivatives of phase angles. This would appear to be particularly suitable for appli-
cations to phase states, and for the study of the asymptotic limits of a representation and the
appropriate limit of Wigner functions.

Although this has been done explicitly only for &Jand SU3), the parameters which enter
in the realization can be generally interpreted as projective coordinates, related o $)J(
Wigner functions, and understood physically as related to the distributianpbfotons between
n+1 fields.
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APPENDIX A: HOW TO COUNT THE DIMENSION OF THE STABILIZER

In this section, we show why our construction only works for algebras which Aaas their
complexification, and for which representationsfgf our construction is possible.

Let h be the Cartan subalgebra of a Lie algebra of one of the classical ghoepsSUf),
SO(2n+1), Sp(2), SO(2n) or their noncompact versiohsA good comprehensive review of
Lie algebra structure is Refs. 17 and 18.

Let f, be a lowering operator corresponding to the positive eodh order thatf ,x, # 0 it is
necessary and sufficient thak,\)=0, where(,) is the Killing form. Notice that such lowering
operators form a nilpotent subalgebra: we denotet,byhe subset of positive roots for which
(N, a)>0.

Now, let {«a;};—, ; be a set of simpldpositive roots,{w;}i-1; the corresponding set of
weights, i.e., @;,a;)=djj .

Any dominant weight and positive root can be written as

n n
)\:E )\i(l)i, )\iEN+, a=2 miai, miEN+. (Al)
=1 =1
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Let us fix a fundamental weighb, (which is equivalent to choosing a node on the Dynkin
diagram).

For a given Lie algebrg (i.e., for a given Dynkin diagraimone can compute the number of
roots in to, and check to see, as we choose different nodes of the Dynkin diagram, if there are
sufficiently many roots to allow a decomposition of the type proposed in¥j.

The results are here belowe refer to the Planches in Ref.)18

(1) SU(n+1) (A,): choosing thekth node there ar&(n+1—Kk) positive roots intwk. The
minimum fortwk is n, which occurs whek=1 or k=n. These choices correspond, respectively,
to the representation®, O,..) or (0,..., ON).

(2) SO(2n+1) (B,,n>1): choosing thekth node there arek+k(n—k)-+k(n+1—k)
=2k(n+1—k) positive roots int,, . The minimum is &, which is bigger than the rank of the
group: it is impossible to construct SQ{2 1) on the torus.

(3) Sp(2n) (C,,n>2): choosing theékth node there ar&(n—Kk) +k+k=k(n+2—Kk) posi-
tive roots. The minimum ism+ 1, and this is again greater than the ram&f Sp(2n).

(4) SO(2n) (D,): choosing thekth node there ar&(n—k)+k+k=k(n+2—Kk) positive
roots, the minimum is1+ 1, which is also greater than the rank of the group.

As we see, the minimal number is equal to the rank of the algebra onlfor

APPENDIX B: A COHOMOLOGICAL PERSPECTIVE ON S-MATRIX THEORY

We wish to draw the attention of the reader to the following interesting “cohomological”
interpretation of the solution for the operatsr

In the construction of the coefficient$, of the operatorS from the ratios of Eq(77) as
described above, it is nai priori clear that the coefficiens, corresponding to a nontrivial
partition v defined starting from the trivial partition does not depend on the particular “path” we
have followed to reach the given partition Indeed—in general—there are different ways of
getting to a given partition starting from the trivial one; for instance, we have

Co1 Ca1
(2,0,0,0,.0—~(A—1,1,0,0,.)—~(\—2,1,1,0,.) or (B1)
Ca1 Co
(2,0,0,0,.)—~(A—1,0,1,0,.0—~(N\—2,1,1,0,..). (B2

We have to make sure that the coefficiéht , 110, )defined along these two different “paths”
does not depend on the choice of path. We observe here that this in particular implies that the
following cocyclecondition holds

RV,V’RV’,V"RV”,V::I' (B3)

for any partitionsy, v’, »” which are adjacent in the following sense: Two partitions’ of A are
said to beadjacentif there existi #] such that

V= V|,(+ 5”(_5“(, kzl,...n+1. (B4)

Let us verify this fact and consider the small loop

Cij Cik Cii
v—v — 1" -, (B5)
V;:Vr+5ir_5jrv V,r,:Vr,‘{'5jr_5kr:Vk+5ir_5kr’ (B6)

and the associated cocycle condition

Downloaded 19 Jun 2002 to 216.211.76.195. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



3444 J. Math. Phys., Vol. 43, No. 7, July 2002 H. de Guise and M. Bertola

YO pi() Vi pi (V) YO pi(v))

RVV,RVV,RV,V”_ N I 3y B7
Yo (7)) YA D) YN pi () (87
which, according to Eq(B3), should be 1.
Using the expressions fof; , it can be verified explicitly that, if we set;=1, then
(y;i)* (Uj*vj)
yij Uikvi 1 ( )

Using Eq.(B8), one sees at once that thelependence drops out E@7). Moreover, since, |,
k are distinct indices, one checks also that

pi(v")=pi(v'),  pi(¥")=pi(v), p(¥)=p(¥). (B9)

Therefore Eq.(B7) is consistent with Eq(B3). In a similar way, one can easily check that
R, =(R, ,) ! This equation, together with EB7), define acocycleover partitions.
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