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Coherent state realizations of su „n¿1… on the n-torus
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We obtain a new family of coherent state representations of SU(n11), in which
the coherent states are Wigner functions over a subgroup of SU(n11). For repre-
sentations of SU(n11) of the type~l, 0, 0,...!, the basis functions are simple
products ofn exponential. The corresponding coherent state representations of the
algebra su(n11) are also obtained, and provide a polar decomposition of su(n
11) for anyn11. The su(n11) modules thus obtained are useful in understand-
ing contractions of su(n11) and su(n11)-phase states of quantum optics.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1479301#

I. INTRODUCTION

In this paper, we wish to present a new kind of coherent state1 construction for the groups
SU(n11). The construction is applicable to unitary irreducible representations~unirreps! of
SU(n11) characterized by integral highest weights of the type~l, 0,...! for which there is no
weight multiplicity, described by Young tableaux having a single row.

Our coherent states differ from the usual coherent states in that our basis function
functions over a subgroupk of SU(n11) rather than polynomials in holomorphic variable
Because there is no multiplicity of weights in SU(n11) unirreps of the type~l, 0,...!, we can
choosek to be the Cartan subgroup of SU(n11). Basis functions for our modules are simp
products ofn exponential factors, and are closely related to the SU(3).SO(3) construction of
Ref. 2.

The realization of su(n11) that we obtain is particularly well-suited for a discussion of po
decompositions of su(n11) generators. We consider as an application a study of phase stat3–6

and, in particular, of SU~2! and SU~3! phase states. The general case can be inferred from
discussion of the SU~3! case and from the results of Sec. III.

Coherent states are also useful in understanding the ‘‘semiclassical’’ behavior of systems7 Our
construction can also be used to understand some of the possible asymptotic limits of qu
systems. For SU(n11) unirreps of the type~l, 0,...!, which are applicable to (n11)-channel
interferometry,6 the asymptotic limit corresponds to taking the number of~unpolarized! photonsl
to be arbitrarily large. The parameters which enter in the explicit realization of the su(n11)
generators will be related to the partition ofl photons betweenn11 channels.

The construction is presented first for SU~2! in Sec. II. The general construction, valid for th
irreps~l, 0,...! of SU(n11) is presented in Sec. III. Section IV contains an application to SU~3!
of the general formalism. Our paper ends with a discussion containing further results and a
conclusion.

a!Electronic mail: hdeguise@mail.lakeheadu.ca
34250022-2488/2002/43(7)/3425/20/$19.00 © 2002 American Institute of Physics
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II. SU„2…

A. Coherent state representation of the su „2… algebra

A basis forA1 , the complex extension of the su~2! algebra, is given in the usual way, by th
three operators$ĥ1 ,ê1 ,ê2% with nonzero commutation relations

@ ĥ1 ,ê6#562ê6 , @ ê1 ,ê2#5ĥ1 . ~1!

For l any positive integer, a highest weightuxl& for an irrep of dimensionl11 ~the numberl is
just twice the spin of the representation! is defined by

ĥ1uxl&5luxl&, lPZ1, ê1uxl&50. ~2!

Now it can be verified explicitly that the mapG:

ĥ1°G~ ĥ1!52 i
d

dw
,

ê1°G~ ê1!52
1

2
e2iw~ tanb!21S l1 i

d

dw D , ~3!

ê2°G~ ê2!52
1

2
e22iw~ tanb!S l2 i

d

dw D ,

preserves the commutation relations of su~2! and is therefore a realization ofA1. A carrier space
for this representation is the span of exponential functions$einu,n52l,2l12,...,l22, l%. The
highest and lowest weight state proportional toeilu ande2 ilu, respectively.

To obtain Eq.~3!, one first chooses some fixed but otherwise arbitrary~generic! angleb in the

range 0,b,2p. With b fixed, the stateRy(b)uxl&, whereRy(b)5e(ê12ê2)b, Rz(w)5ewĥ1, is
cyclic under the action ofRz

21(w). Ry(b)uxl& then acts as a fiducial vector ‘‘translated’’ b
Rz

21(w).
Let uc& be an arbitrary state in the irrep with highest weightl, and define the coherent sta

wave function foruc& by

uc&°cb~w![^xluRy~b!Rz~w!uc&. ~4!

Since^xluê250, it is convenient to writeRy(b) in antinormal-ordered form, so that, ignorin
a normalization and a phase factor,

cb~w!5^xluRy~b!Rz~w!uc&}^xluetanbê1Rz~w!uc&. ~5!

The coherent state realizationG(X̂) of an operatorX̂ in su~2! is defined by

X̂uc&→@G~X̂!c#b~w![^xluetanbê1Rz~w!X̂uc&. ~6!

Using Rz(w)5exp(iwĥ1), it follows immediately from this that

ĥ1°G~ ĥ1!52 i
d

dw
, ~7!

since

G~ ĥ1!cb~w!5^xluetanbê1Rz~w!ĥ1uc&. ~8!
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If X̂5ê6 , we then have

@G~ ê6!cb#~w!5^xluetanbê1Rz~w!ê6uc&5e62iw^xluetanbê1ê6Rz~w!uc&. ~9!

The step which differentiates ours from the usual construction is to expandê6 as

ê65x6e2tanbê1ê2etanbê11y6e2tanbê1ĥ1etanbê11z6ĥ1 , ~10!

wherex6 , y6 , andz6 are coefficients to be determined. This expansion is always possible
ê6 is a traceless su~2! matrix and can therefore always be expanded in terms three line
independent traceless matrices inA1 .

Before solving for the coefficients in Eq.~10!, it is worth observing that, once substituted
Eq. ~9!, one obtains the simpler expression

@G~ ê6!cb#~w!5e62iw~y6^xluĥ1etanbê1Rz~w!uc&1z6^xluetanbê1Rz~w!ĥ1uc&!

5e62iwS ly62 iz6

d

dw Dcb~w!, ~11!

where Eq.~7!, ^xluĥ15l^xlu and ^xluê250 have been used.
Although they will depend on the parameterb, the coefficientsy6 andz6 cannot depend on

the particular choice of representation used to compute them, as long as the represent
faithful: if they did, commutation relations which would hold in a representation would
necessarily hold in another. Thus, one can compute these coefficients in the defining 232 repre-
sentation, where

ê1°S 0 1

0 0D , ê2°S 0 0

1 0D , ĥ1°S 1 0

0 21D , etanbê1°S 1 tanb

0 1 D . ~12!

For X̂5ê1 , Eq. ~10! yields the matrix system

S 0 1

0 0D 5x1S 2tanb 2tan2 b

1 tanb D 1y1S 1 2 tanb

0 21 D 1z1S 1 0

0 21D . ~13!

It is immediately possible to solve forx1 , as it multiplies the only matrix with a nonzer
entry below the diagonal. Knowingx1 , it is then easy to solve fory1 andz1 . The solution is
simply y152z15 1

2(tanb)21 so that the final expression forG(ê1) corresponds to that given in
Eq. ~3!. Repeating the steps forê2 yields x251 andy252z25 1

2 tanb so thatG(ê2) has the
form given in Eq.~3!.

B. Basis functions

First, we claim that the set of states$Rz
21(w)Ry

21(b)uxl&, Rz
21(w)PU(1), b fixed%, obtained

by U~1! rotation of the stateRy
21(b)uxl& through all possible anglew, spans the carrier spaceVl

for an irrep of SU~2! with highest weightl. To show this, recall thatVl is generated fromuxl& by
repeated action of the lowering operatore2 . Now,

Rz
21~w!Ry

21~b!uxl&}Rz
21~w!etanbê2uxl&}etanbe22iwê2uxl&eilw ~14!

by using the normal form ofe2b(ê12ê2). This can be seen to indeed generate the whole ofVl

~provided that tanbÞ0, which is our assumption aboutb being generic!.
Thus, to any stateuc& in Vl there corresponds a unique coherent state wave function

uc&°cb~w![^xluRy~b!Rz~w!uc&, ~15!
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which belongs to the set of U~1! square-integrable functions. In particular, the basis functionsuln&
are given bycb;ln(w)5^xluRy(b)uln&einw and must be proportional to the only normalize
function on the half-circle with weightn:

cb;ln~w!}
1

Ap
einw. ~16!

Note that we can restrict to the half circle because the difference of two weights in an inv
subspace is always an even integer.

C. Making the representation Hermitian

The representation of su~2! given in Eq.~3! is not Hermitian with respect to the natural U~1!
inner product. If, as usual, the adjoint ofê1 is taken asê2 , i.e., ê1

† 5ê2 , then

^ln8uG~ ê1!uln&Þ^lnuG~ ê2!uln8&* ~17!

if

^cbucb8 &5E
0

p

dw cb* ~w!cb8 ~w!. ~18!

However, sincel is integral, the representationG must be equivalent to a Hermitian repr
sentationg, i.e., there must exist an intertwining operatorK such that

K21GK5g, with ^ln8ug~ ê1!uln&5^lnug~ ê2!uln8&* . ~19!

To construct the operatorK, note thatG(ĥ1) is actually Hermitian in the representation of Eq.~3!,
so thatK21G(ĥ1)K5G(ĥ1)5g(ĥ1). Thus,K commutes withG(ĥ1) and weight eigenstates o
G(ĥ1) are also weight eigenstates ofK. Let

ĥ1uln&5nuln&, Kuln&5Knuln&. ~20!

Using Eq.~19!, the Hermiticity condition reads

^l,n12ug~ ê1!uln&5
1

2 tanb
~l2n!

Kn

Kn12
5^lnug~ ê2!ul,n12&* 5

1

2
tanb~l1n12!

Kn12*

Kn*
~21!

from which we conclude that the ratio ofKn12 /Kn must satisfy, up to a phase that we choose
be 11,

Kn12

Kn
5

1

tanb
A l2n

l1n12
, ~22!

so thatg is indeed Hermitian and given explicitly by

^l,n12ug~ ê1!uln&5
1

2
A~l1n12!~l2n!5^lnug~ ê2!ul,n12&. ~23!

D. Application: Phase operators and phase states

Any matrix M can be factorized in polar formU•D, with U a unitary matrix andD a
semipositive definite diagonal matrix.8 The operatorD is always well-defined. The unitary matri
U is the exponential of a Hermitian ‘‘phase’’ operator associated with the phase of the obse
 19 Jun 2002 to 216.211.76.195. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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described by the matrixM. The problems of constructing a phase operator in a finite or se
infinite dimensional space are related to the lack of uniqueness in the definition ofU which occurs
when the rank ofM is smaller than its dimension.

Our realizationG acts in a natural way in the infinite dimensional irreducible space span
by the set of U~1! functions ~phase functions! Vs2

5$ei (2p1s2)w/Ap,pPZ%, where s2 is the
‘‘duality’’ of the representation:s250 for bosons ands251 for fermions. Furthermore, the
realizationG of ê1 or ê2 can obviously be factored as a product of two operators. One may e
show that the ‘‘diagonal’’ part of the decomposition ofG(ê6) obtained, to within a sign, from
AG†(ê6)G(ê6).

We are primarily interested in the matrix representation of the operatorÊw[e2iw. In the
infinite-dimensional spaceVs2

, the matrix representation ofÊw contains zeroes everywhere, e

cept immediately above the diagonal.Êw is unitary with respect to the inner product of Eq.~18!.
Since@G(ĥ1),Êw#5Êw ,Êw is the exponential of an Hermitian ‘‘phase’’ operator that is conjug
to ĥ1 .

The eigenstates ofÊw , known as phase states,3 are labeled by the continuous variableu + and
given by

uu +&5 (
p52`

`

ei ~2p1s2!~u+1w!, Êwuu +&5e22iu+uu +&. ~24!

To obtain a finite dimensional Hermitian representation of su~2!, we project fromVs2
a finite

dimensional subspaceVl spanned by an appropriate subset of exponential functions. Rowe9 has
already observed that the appropriate projection operator is the intertwining operatorK of Eq.
~19!. SinceKn50 for unu.l, K isolates from the set of all U~1! functions$eipw,p52`,... ,̀ % a
subset of pertinent functions which form a basis for thephysical SU(2) subspacefor the repre-
sentation.K also adjusts the matrix elements of the various generators of the algebra so as to
g Hermitian. Thus, the expression ofg in terms of an intertwining operator which acts as
projector ties in nicely with the work by Popov and collaborators10 on phase operators in a finit
dimensional subspace.

The restriction ofÊw to the finite-dimensional spaceVl is no longer unitary: the highes
weight is annihilated byÊw so thatÊw is now nilpotent, with the last line of its matrix represe
tation containing only zeroes:

Êw5S 0 1 0 ...

0 1 0

] � 1 �

1

0 0 ... 0

D . ~25!

We would like to transformÊw into a unitary matrix, but that transformation is not unique, as
rank of the matrix representation ofg(ê6) in Vl is less than the dimension of this matrix. It
nevertheless possible to obtain a unitary operator closely related toÊw . The choice

Eŵ~j !5S 0 1 0 ...

0 1 0

] � 1 �

1

ei j 0 ... 0

D ~26!
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will produce a unitary matrix with determinantei j. The factorj is related to the phase of th
vacuum state, which cannot be determined.

Vourdas4 has done an extensive analysis of the case wherej50, which amounts to imposing
a cyclic boundary condition by identifyingul,l12&;ul,2l&. The case of generalj does not
differ significantly from this particular case wherej50: the eigenvalues and eigenvectors of t
matrix of Eq.~26! are simply shifted by inessential phase factors. Thus, we setj50 and define

Eŵ[Eŵ~0!, ~27!

so that det(Eŵ)51. The notation indicates thatEŵ is the exponential of a Hermitian ‘‘phase
operatorŵ.

Phase states in the finite dimensional subspaceVl are eigenstates ofEŵ . They are obtained by
restricting the sum in Eq.~24! to those values ofn that correspond to states occurring in the su~2!
irrep with highest weightl:

ul;ul&5 (
n52l,2l12,...,l

einululn&5
sin~~l11!~w1ul!!

sin~w1ul!
, ul52p/~l11!, ~28!

using uln&°einw. The stateul;ul& behaves like a periodicd function asl→`, in accordance
with the requirement of Ref. 5.

E. Application: Asymptotic SU „2… Wigner function

Let l→` and setn05l cos 2b, i.e., set cos 2b5n0 /l to its ‘‘classical value.’’ Then

lim
l→`

Kn01p12

Kn01p
5 lim

l→`

tanbA~l1n01p12!

~l2n02p!
5tanbA11cos 2b

12cos 2b
511O~p/l!. ~29!

For finite values ofp, we can therefore solve forKn01p asKn01p51. For finitep, the operatorsê6

are now represented by

g~ ê1!→2 1
2 e2iwl~12cos 2b!cotanb52 1

2 le2iw sin 2b,

~30!

g~ ê2!→2 1
2 e22iwl~11cos 2b!tanb52 1

2 le22iw sin 2b,

and, in particular, we haveg(L̂y)5 i (g(ê1)2g(ê2))5l sin 2b sin 2w. The reduced SU~2!-
Wigner function,^lnuexp(iuL̂y)uln8&, can therefore be written, in the limit, as

lim
l→`

^ 1
2 l, 1

2 ~n01p!uexp~ iu~g~ ê1!2g~ ê2!!!u 1
2 l, 1

2 ~n01q!&

→ 1

p E
0

p

ei ~~1/2!~p2q!!2weiul sin 2b sin 2wdw

5Jp2q~~2l sin 2b!u!, ~31!

whereJn is a Bessel function and we have used an integral expression forJn found in Ref. 11.
This result has been further investigated in Ref. 12.
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III. GENERALIZATION TO SU „N¿1… IRREPS OF TYPE „l, 0,...…

A. Algebraic formulation

In this section we generalize the above-mentioned construction to obtain a representa
su(n11) on then-torus. We start by going to the complex extension of u(n11), spanned by the
(n11)2 operators$Ĉi j ,i , j 51,...,n11% which satisfy the commutation relations

@Ĉi j ,Ĉkl#5d jkĈil 2d i l Ĉk j . ~32!

The complex extension of su(n11) is obtained by selecting from the above set the operatorsĈi j ,
iÞ j and ĥk , where

ĥk5Ĉkk2Ĉk11,k11 , k51,...,n. ~33!

Let h be the Cartan subalgebra ofg5sl(n11,C) consisting of diagonal matrices. Let~l, 0, ...!
be a dominant integral weight~with respect toh! and uxl& the highest weight vector of a repre
sentation on the spaceV which has only trivial weight multiplicities. Lets be the stabilizer
subalgebra of̂xlu, i.e.,

s5$sPg s.t. ^xlus5a~s!^xlu%, ~34!

wherea(s)PC. Note that the Cartan subalgebrah,s.
Choose and fix a generic elementg in SL(n11,C) and construct another ‘‘twisted’’ copy o

the Cartan subalgebraghg21. The only condition ong must be that

g5s1ghg21, ~35!

i.e., it must be possible to expand an arbitrary element ing as a sum of an element ins and an
element inghg21. The coherent state representation of an operatorX̂Pg is then defined by

G~X̂!cg~k![^xlug k X̂uc&, kPH. ~36!

Since H is just ann-dimensional torus, the group elementkPH is parametrized byn angles
w1 ,...,wn as ink5exp(iSp wpĥp), wherep runs fromp51,...,n. We will abuse the notation and
write the coherent state as a function ofwI 5@w1 ,...,wn#. With this notation we find that, for

X̂5ĥkPh,

G~ ĥk!52 i
]

]wk
. ~37!

If X̂5Ĉj , , ,Þ j so thatX̂¹h, then we have

G~Ĉj ,!cg~w!5^xlug exp~ iSkwkĥk!Ĉj ,uc&,

5exp~ iSkmj ,
k wk!^xlugĈj , exp~ iSwkĥk!uc&

5exp~ iSkmj ,
k wk!^xlu~gĈj ,g21!g exp~ iSkwkĥk!uc&, ~38!

wherek runs from 1 ton and where

@ ĥk ,Ĉj ,#5mj ,
k Ĉj ,5dk jĈk,2dk11,j Ĉk11,,2dk,Ĉjk1dk11,,Ĉj ,k11 ~39!

for j Þk51,...,n11. With the understanding thatw05wn1150, the sumSk51
n mj ,

k wk can be
rewritten as
 19 Jun 2002 to 216.211.76.195. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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(
k51

n

mj ,
k wk5w j2w j 212w,1w,21 . ~40!

In order to complete the description of our coherent state representation ofg, we need to compute
explicitly, for every (j ,), the decomposition

~41!

as per Eq.~35!. It is simpler~and equivalent! to compute

Ĉj ,5g21ŝj ,g1d̂ j , . ~42!

Substitution of~42! into Eq. ~38! then yields

G~Ĉj ,!cg~w!5exp~ iSkmj ,
k wk!^xlu~ ŝj ,g1d̂ j ,!exp~ iSkwkĥk!uc&,

5exp~ iSkmj ,
k wk!^xlu~ ŝj ,g exp~ iSkwkĥk!1g exp~ iSkwkĥk!d̂ j ,!uc&. ~43!

It follows therefore that, in accordance with Eq.~37!, d̂ j , will be a sum of differential operators in
the variableswk , while the action on the left ofŝj , will yield back ^xlu to within a normalization
factor.

Again we observe that the expansion coefficients cannot depend on the choice of repr
tion, so that we choose to work in the (n11)3(n11) representation whereuxl&5(1,0,...,0)t.
The computation is further facilitated if we observe that the dependence ong is actually only up
to left multiplication ofS; hence we can writeg5S•ḡ, with SPS in the stabilizer subgroup an
ḡ a conveniently chosen coset representative inS\G; a different choice of the representativeg8
5s•g will produce equivalent representations in which the coherent states are multiplied
characterx(s). Then,

Ĉj ,5~ ḡ!21ŝj , ḡ1d̂ j , . ~44!

If the highest weight vector̂xlu is the vector~1, 0,..., 0!, then a general elementŝPs and coset
representativeḡ have respective the matrix forms

ŝ°S y 0

xt YD , ḡ5S 1 2v

0t 1 D , ~45!

where Y is an n3n complex matrix,x5(x2 ,x3 ,...,xn11) is a complex 13n vector, 0 is the
13n null vector,y52Tr(Y), v5(v2 ,v3 ,...,vn11) is a complex vector, and1 is the n3n unit
matrix. @The matrix form ofḡ can be compared with Eq.~12!.#

The productḡ21ŝḡ is a matrix of the form

S y1v"x 2~y1v"x!v1vY

xt 2x^ v1Y D , ~46!

wherev"x is the usual scalar product and̂ denotes the outer product so thatx^ v is an n3n
matrix.

We therefore seek to match the matrix expression ofĈj , with the expansion

S y1v"x 2~y1v"x!v1vY

xt 2x^ v1Y D 1d, ~47!
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whered is a diagonal matrixd5diag(d1,...,dn11) of zero trace.
For every different pair of indices (j ,,), j Þ,, and withv appearing as parameter~which does

not depend onj, ,!, we need to solve the above-given equation fory, Y, x, d. These unknowns
depend onj, , but, to avoid overburdening the notation, we will keep writingy for yj , , dk for dj ,

k ,
etc., until we reach final formulas.

Using the form ofŝ, the highest weight state (1,0,...)t and Eq.~43!, we find that the only
coefficient inŝ that enters in the expression ofG(Ĉj ,) is y. The only element ins to have nonzero
entry in position~1,1! is ĥ1 . As ^xluĥ15^xlul, Eq. ~43! simplies to

G~Ĉj ,!5yj ,exp~ iSkmk
j ,wk!S l2 i (

k51

n

zk
]

]wk
D , yj ,zk5dk. ~48!

We divide the straightforward search for the solution into three subcases. It is also us
this point to introduce an auxiliary set ofn11 vectors in the Cartan Lie-algebrah, given by

r̂k52 (
j 51

k21

j ĥ j1(
j 5k

n

~n2 j 11!ĥ j5diag~21,...,21, n
kth-term

,21,...,21!, k51,...,n11, ~49!

G~ r̂k!52 i S (
j 51

k21

j
]

]w j
2(

j 5k

n

~n2 j 11!
]

]w j
D . ~50!

Note that, forr̂n11 , there is no contribution from the second sum in Eq.~49!.

1. Case 1: Ĉ 1ø

Let j 51, c be the vector of components (c)k5d,k , k52,3,...,n11 and write

Ĉ1,5S 0 c

0t 0D , ~51!

From Eq.~47!, x50, y1d150, andY1d50; Y is a diagonal matrix with entriesy5Ykk5
2dk.

From v(2y11Y)5c, we find first thatYkk5y for kÞ,, and, using the conditiony1,

1Tr(Y)50, thatY,,52ny. Finally, from the nonzero component,5k of c, one obtains

y5
21

~n11!v,
. ~52!

If Eq. ~35! is to hold, then we must havev,Þ0 ;,. The matrixd is given by

~53!

Therefore we finally have

G~Ĉ1,!5y1, ei ~w12w,1w,21!~l1G~r̂,!!, y1,5
21

~n11!v,
, ~54!

where we have foundSk51
n mk

1,wk5w12w,1w,21 usingwn1150 and Eq.~40!.
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2. Case 2: Ĉ j ø , øÅ j , ø, jÐ2

We now write

Ĉj ,5S 0 0

0t cj ,
D , ~55!

where (cj ,)mn5d jmd,n . Using Eq.~47!, x50 once more, so thaty1d150. Thus, the diagona
elements ofY are such thatYkk1dk50. The only off-diagonal entry inY is a 1 in thej th row, ,th
column.~For consistency it is convenient to enumerate the entries of then3n matrix Yjk with j,
k52,...,n11.! From v(2y11Y)50, we obtain the equations

vk~2y1Ykk!1v jd,k50, ~56!

from which we conclude that, ifkÞ,, Ykk5y. The coefficientY,, is fixed byy1tr(Y)50 to be
Y,,52ny. Finally, from Eq.~56! with ,5k, we conclude that

y5
v j

~n11!v,
, ~57!

wherev jÞ0Þv, by assumption. The diagonal matrixd is given by

~58!

Summarizing, we find, using Eq.~40!,

G~Ĉj ,!5yj ,ei ~w j 2w j 212w,1w,21!~l1G~r̂,!!, yj ,5
v j

~n11!v,
. ~59!

3. Case 3: Ĉ ø1 , øÅ1

In this case, the vectorxt has componentsxj5d, j . Thus, the scalar productv"x5v, , and the
equationy1v,1d150 gives

d152~v,1y!. ~60!

From v(2y11v,11Y)50, we conclude that

~2y2v,!vm1 (
k51

n

vkYkm50, m52,3,...,n11. ~61!

Now, (x^ v)pm5xpvm5d,pvm . Thus, we have

052~x^ v!pm1Ypm1dmdpm52d,pvm1Ypm1dmdpm , m52,3,...,n11. ~62!

Multiplying Eq. ~62! by vp and summing overp, we obtain

05(
p

~2d,pvpvm!1(
p

vpYpm1(
p

vpdmdpm , m52,3,...,n11. ~63!

Using Eq.~61! and the fact thatvmÞ0, this can be simplified to

052v,1y1v,1dm5y1dm, m52,3,...,n11. ~64!

Now using the fact thatSk51
n11 dk50, we immediately find
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y52
v,

n11
, ~65!

so that, using Eq.~60!, we find the matrixd to be

d5diag~ny,2y,...,2y!52yr̂152
v,

n11
r̂1 . ~66!

Hence,

G~Ĉ,1!5y,1ei ~w,2w,212w1!~l1G~r̂1!!, y,15
v,

n11
, ,52,...,n11, wn11[0. ~67!

B. Evaluating the vk coefficients

The coefficients vk are related to SU(n11) Wigner functions as follows. Ifn
5(n1 ,n2 ,...,nn11) denotes an ordered partition ofl, i.e., n11n21...1nn115l with n i a non-
negative integer, then the set of states$cn%, labeled by different partitionsn of l, can be chosen
as basis states for the irrep~l, 0,..., 0! of su(n). These states satisfy

ĥkcn5~nk2nk11!cn , ~68!

and are uniquely identified by the set of eigenvalues of the operatorsĥk .
Next, we needg5ḡ•S, or ḡ5S21g5ḡ, with S21 andG matrices of the form

S215S w 0

Qt XD , g5S a b

ct U D , ~69!

where a5^xluguxl& and bk5^xlugucnk
&, with cxl

the highest weight state of th
(n11)-dimensional defining representation~1, 0,..., 0! andcnk

, k52,...,n11, the remaining basis
states of this irrep. Thus we have

w5
1

^xluguxl&
, vk5

^xlugucnk
&

^xluguxl&
. ~70!

C. Basis functions

We have already observed that, withḡ of the form of Eq.~45! andv jÞ0 ; j , then (ḡ)21uxl&
generates the whole representation space. Thus, the state (ḡ)21uxl& acts as a cyclic vector for the
irrep with highest weight~l, 0, 0,...! under the action of any fixed elementkPH in the Cartan
subgroup. Hence, to every vectorc in the representation space, there corresponds a unique
tion on H:

c°cg~k!5^xlug kuc&. ~71!

The basis statecn of ~l, 0,..., 0! is mapped to the normalized element on then-torus

cn°^xluḡkucn&}^xluḡucn&exp~ iSk~nk2nk11!wk!°
exp~ iSk~nk2nk11!wk!

~2p!n/2 . ~72!

The highest weight statecxl
of ~l, 0,..., 0! is represented bycxl

°eiw1/(2p)n/2.
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D. Making the representation Hermitian

States on the torus are naturally normalized with respect to the inner product

^cn8ucn&5
1

~2p!n E
0

2p

dw1E
0

2p

dw2¯E
0

2p

dwn exp~2 iSk~nk82nk118 !wk!exp~ iSp~np2np11!wp!

5) dn
k82nk2n

k118 1nk11
. ~73!

However, with this inner product, the action of the operatorsG(Ĉi j ), iÞ j , is not Hermitian:

^cn8uG~Ĉi j !ucn&Þ^cn8uG
†~Ĉj i !ucn&5^cnuG~Ĉj i !ucn8&* ; ~74!

the resulting representation does not exponentiate to a unitary representation of the group
all representations of su(n11) having integral dominant weight are equivalent to Hermit
representations, there must exist an intertwining operatorK that will transformG into a Hermitian
representationg, i.e., there existsK

g~Ĉi j !5K21G~Ĉi j !K, such that ^cn8ug~Ĉi j !ucn&5^cnug~Ĉj i !ucn8&* . ~75!

We find K by combining Eq.~75! with its Hermitian conjugateg†(Ĉj i )5K†G†(Ĉj i )(K21)†, so
that

g~Ĉi j !5g†~Ĉj i !⇒G~Ĉi j !S5SG†~Ĉj i !, ~76!

whereS5KK† is a Hermitian operator. Noting that the Cartan elementsĥk are represented unde
the mapG by operators Hermitian with respect to the inner product of Eq.~73!, we may takeS to
be diagonal in the weight basis:Sucn&5Snucn&. Thus, using Eq.~76!, we obtain the condition

^cn8uG~Ĉi j !Sucn&5^cn8uSG†~Ĉj i !ucn&⇒
Sn

Sn8
5

yji* ~l1r i~n8!!

yi j ~l1r j~n!!
[Rn,n8 , ~77!

wherenk5nk81d ik2d jk and

r i~n!5^cnur̂ i ucn&5 (
k51

n11

~r i !kknk , ~78!

where (r i)kk is thekth entry in the diagonal matrixr i defined in Eq.~49!.
To construct the coefficientsSn from the ratios of Eq.~77!, one starts by~arbitrarily! fixing to

11 the coefficient of the highest weight corresponding to the trivial partition~l, 0, 0,...!; changing
this would just changeS by an overall multiplicative factor. Noting now thatS5KK† is a positive
Hermitian matrix, the ratioKn /Kn8 can therefore be obtained, up to a phase, as the square ro
the right-hand side of Eq.~77!. The phase of the ratioKn /Kn8 should be chosen so that the matr
elements ofg(Ĉi j ) are real, something that it is always possible to do. In practice, one cho
without loss of generality, the elementgPG, from whichyi j is obtained, so thatyi j is always real.
Assuming therefore thatg is chosen in this way, we havevk always real and

Kn

Kn8
5Ayji ~l1r i~n8!!

yi j ~l1r j~n!!
. ~79!
 19 Jun 2002 to 216.211.76.195. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



an

3437J. Math. Phys., Vol. 43, No. 7, July 2002 Coherent-state realization of su(n11)

Downloaded
IV. APPLICATION TO SU „3…

A. Representation on the 2-torus

The su~3! Lie algebra is spanned in the usual way by the subset of u~3! operators comprising
the ladder operators$Ĉi j ,iÞ j % together with the Cartan generatorsĥ15Ĉ112Ĉ22, ĥ25Ĉ22

2Ĉ33. The $Ĉi j % operators satisfy the general commutation relations@Ĉi j ,Ĉkl#5d jkĈil

2d i l Ĉk j .
The highest weight state of the irrep~l,0! is mapped to the stateul,0,0&°eilw1/2p. More

generally, a stateun1 ,n2 ,n3&, with n11n21n35l, is mapped to

un1 ,n2 ,n3&°
ei ~n12n2!w11 i ~n22n3!w2

2p
5

ei ~n12n2!w11 i ~2n21n12l!w2

2p
, ~80!

where the conditionn11n21n35l has been used.
Following the parametrization of Ref. 13 for SU~3! elements, and using the fact that we c

chooseg to be such that the matrix elements are real, we find

w5
1

cos1
2 b2

, v25cos
1

2
b3 tan

1

2
b2 , v35sin

1

2
b3 tan

1

2
b2 . ~81!

Simple application of Eqs.~37!, ~54!, ~59!, and~67! then yields

G~ ĥ1!52 i
]

]w1
, G~ ĥ2!52 i

]

]w2
,

G~Ĉ12!5
21

3 cos1
2b3 tan 1

2b2

ei ~2w12w2!Fl1 i
]

]w1
2 i

]

]w2
G ,

G~Ĉ21!5
2cos1

2b3 tan 1
2b2

3
e2 i ~2w12w2!Fl22i

]

]w1
2

]

]w2
G ,

G~Ĉ13!5
21

3 sin 1
2b3 tan 1

2b2

ei ~w11w2!Fl1 i
]

]w1
12i

]

]w2
G , ~82!

G~Ĉ31!5
2sin 1

2b3 tan 1
2b2

3
e2 i ~w11w2!Fl22i

]

]w1
2 i

]

]w2
G ,

G~Ĉ23!5
1

3 tan1
2b3

ei ~2w112w2!Fl1 i
]

]w1
12i

]

]w2
G ,

G~Ĉ32!5
tan 1

2b3

3
ei ~w122w2!Fl1 i

]

]w1
2 i

]

]w2
G .
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The ratios ofK matrix elements required to compute the matrix elements ofg(Ĉi j ) are
Kn /Kn8 , with nk85nk1d ik2d jk . Usingn11n21n35l, they are given explicitly by

Kn1n2n3

Kn111,n2 ,n321
5v3Al1r1~n8!

l1r3~n!
5sin

1

2
b3 tan

1

2
b2Al12~n1112n2!1~n22n311!

l2~n12n2!22~n22n3!

5sin
1

2
b3 tan

1

2
b2An111

n3
, ~83!

Kn1n2n3

Kn1n221,n311
5

v2

v3
Al1r3~n8!

l1r2~n!
5

1

tan
1

2
b3

An311

n2
, ~84!

Kn1n2n3

Kn111,n221,n3

5v2Al1r1~n8!

l1r2~n!
5cos

1

2
b3 tan

1

2
b2An111

n2
. ~85!

To obtain the matrix elementg(Ĉ13), for instance, one computes

^cn111,n2 ,n321ug~Ĉ13!ucn1 ,n2 ,n3
&

5E dw1

2p E dw2

2p
exp@2 i ~n12n211!w12 i ~n22n321!w2#

3~K21G~Ĉ13!K!exp@ i ~n12n2!w11 i ~n22n3!w2#,

5E dw1

2p E dw2

2p
exp@2 i ~n12n211!w12 i ~n22n321!w2#

3S 1

Kn111,n2 ,n321
ei ~w11w2!

21

3 sin
1

2
b3 tan

1

2
b2

Fl1 i
]

]w1
12i

]

]w2
GKn1 ,n2 ,n3D

3exp@2 i ~n12n2!w11 i ~n22n3!w2#

3
21

3 sin
1

2
b3 tan

1

2
b2

@l2~n12n2!22~n22n3!#sin
1

2
b3 tan

1

2
b2An111

n3
,

52A~n111!n3. ~86!

B. Application: the SU „3…\†R6
‡U„1…2 contraction

Consider the limit wherel→`. Set

n̄15lS cos
1

2
b2D 2

, n̄25lS sin
1

2
b2D 2S cos

1

2
b3D 2

, n̄35lS sin
1

2
b2D 2S sin

1

2
b3D 2

. ~87!

The anglesb2 andb3 then provide a convenient way to parametrize the distribution ofl photons
in three modes with modei containing a large numbern i of photons.
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With this, it is readily seen that the values of the anglesb2 , b3 for which the representation
G of Eq. ~82! is singular correspond to a distribution such that at least one of the three
contains no quanta. Provided thatG is nonsingular, we then have, for values ofn and n8 suffi-
ciently close to the average valuesn̄,

lim
l→`

Kn

Kn8
511O~1/l!. ~88!

The representationG is then Hermitian; the diagonal operatorsĥ1 and ĥ2 remain unchanged, an
the ladder generators become, in the limit wherel→`,

G~Ĉ12!→22lei ~2w12w2! sinb2 cos
1

2
b3 ,

G~Ĉ21!→22le2 i ~2w12w2!sinb2 cos
1

2
b3 ,

G~Ĉ13!→22lei ~w11w2!sinb2 sin
1

2
b3 ,

~89!

G~Ĉ31!→22le2 i ~w11w2!sinb2 cos
1

2
b3 ,

G~Ĉ23!→2lei ~2w112w2!S sin
1

2
b2D 2

sinb3 ,

G~Ĉ32!→2lei ~w122w2!S sin
1

2
b2D 2

sinb3 .

All the ladder operators commute with one another, and the resultant algebra is@R6#U(1)2.

C. Application: Phase operators and SU „3… phase states

The realizationG acts naturally in the irreducible infinite-dimensional space of functionsVs3
,

where a state un,m&, n,mPZ is represented by the function over the 2-tor
un,m&°ei (2n2m)w1ei (2m2n2s3)w2/2p. Here,s350, 1, or 2 is the ‘‘triality’’ of the representation

We introduce three ‘‘phase-like’’ operators:

Êw12
5ei ~2w12w2!, Êw23

5ei ~2w112w2!, Êw13
5ei ~w11w2!. ~90!

In Vs3
, the operatorsÊw12

andÊw23
are unitary with respect to the natural inner product o

the 2-torus; they are the exponential of phase operators conjugate toĥ1 andĥ2 , respectively, since

F1

2
G~ ĥ1!,Êw12G5Êw12

, F1

2
G~ ĥ2!,Êw23G5Êw23

. ~91!

Note that@ 1
2G(ĥ1),Êw23

#Þ0, @ 1
2G(ĥ2),Êw12

#Þ0.

The realization of an element ofA2 , say,G(Ĉ12) can be expressed as products of a unit

and a diagonal matrix:G(Ĉ12)52Êw12
ê12, whereê125AG†(Ĉ12)G(Ĉ12).
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In the infinite-dimensional spaceVs3
, the unitary operatorsÊw12

andÊw23
commute, and it is

possible to find their common set of eigenvectors. It can be verified that, for anyu1 , u2 , states of
the type

uu1 ,u2&5 (
n,mPZ

ei ~2n2m!u1ei ~2m2n!u2un,m&5 (
n,mPZ

ei ~2n2m!~w11u1!ei ~2m2n!~w21u2!, ~92!

are the simultaneous eigenstate ofÊw12
, Êw23

, andÊw13
:

Êw12
uu1 ,u2&5e2 i ~2u12u2!uu1 ,u2&, Êw23

uu1 ,u2&5e2 i ~2u112u2!uu1 ,u2&,

~93!
Êw13

uu1 ,u2&5e2 i ~u11u2!uu1 ,u2&.

The statesuu1 ,u2& are therefore phase states.
Consider now the finite-dimensional subspaceVl,Vs3

such thatVl is the carrier space for a
unirrep of highest weight~l, 0!. This subspace is projected using theK operator fromVs3

. In
going from the infinite-dimensional spaceVs to the finite-dimensionalVl, a number of problems
arise in connection with the definition and properties of the phase operators.

We denote the states inVl by three non-negative integers as per Eq.~80!. First, however, we
note that it is not difficult to properly define the radial part of an operator. For instance, the

part Ĵ12 of g(Ĉ12) is found fromĴ125Ag†(Ĉ12)g(Ĉ12).
In Vl, the restrictions of the operatorsÊw i j

are nilpotent and therefore no longer unitary. T

rank of Êw i j
is equal to dim(Vl)2(l11) as there are (l11) states annihilated byÊw i j

@one state
in each su(2)i j subrepresentation occurring in the su~3! irrep ~l, 0!#.

In contrast with the SU~2! case, where a single entry ofÊw could be changed so as to obta
the unitary operatorEŵ , an arbitrary complex linear combination of the (l11) states annihilated
by Êw i j

yields another state annihilated byÊw i j
. Thus, we are left with infinitely many ways o

transformingÊw i j
into a unitary phase operatorEŵ i j

, even if we insist that the determinant ofEŵ i j

be 1. Furthermore, it can easily be verified that, forl>2, the restriction ofÊw i j
is an operator that

does not necessarily commute with the otherÊwkl
operators:@Êw i j

,Êwkl
#Þ0.

We point out that, in the matrix representation of@Êw12
,Êw23

# there are preciselyl entries
which are 1 rather than zero in this commutator. The ‘‘faulty’’ nonzero matrix elements appe
positions corresponding to matrix elements of the type^n111,0,n321uÊw13

un1,0,n3&, i.e., matrix
elements involving vacuum states in mode 2: the familiar problems associated with the con
tion of unitary phase operators in the presence of vacuum states are still present.

Thus, the number of ‘‘faulty’’ nonzero matrix elements in commutators of the type@Êw i j
,Êw jk

#

will grow like l, since the number of states having the vacuum in one mode grows likel. On the
other hand, the number of states in the irrep~l, 0! grows like l2. The classical limit wherel
→` corresponds to the limit where the phases commute, provided that we ignore the rela
small number of ‘‘faulty’’ nonzero matrix elements compared to the number of ‘‘correct’’ z
matrix elements. This relative number grows like 1/l.

In particular, in the interpretation of Eq.~89!, the realizationG becomes singular for state
near the vacuum state whenl→` limit. Hence, provided that the distribution of photons in
input state is such that the vacuum can be safely ignored, phase operators can be consid
commuting.

A similar result on the lack of commutativity between thetotal and relative su~2! phase
operators in systems containing few photons has been obtained in Ref. 14. These author
that commutativity was recovered in the classical limit. Our results are similar to those fou
Ref. 14, albeit applicable to the case of noncommutingrelative phases in a three-beam system
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The three-dimensional representation~1, 0! merits special attention. Besides providing
illustrative example for our previous discussion, this representation is the only one that a
commutingunitary phase operators while preserving the polar decomposition.

More precisely, in a system containing a total ofl5n11n21n351 quantum, the explicit
matrix realization of~some of! Ĉi j in terms ofÊw i j

• Ĵi j can easily be found:

~ i j ! Êw i
Ĵi j Ĉi j 5Êw i j

• Ĵi j

~1,2! S 0 1 0

0 0 0

0 0 0
D S 0 0 0

0 1 0

0 0 0
D S 0 1 0

0 0 0

0 0 0
D , ~94!

~2,3! S 0 0 0

0 0 1

0 0 0
D S 0 0 0

0 0 0

0 0 1
D S 0 0 0

0 0 1

0 0 0
D ,

~1,3! S 0 0 1

0 0 0

0 0 0
D S 0 0 0

0 0 0

0 0 1
D S 0 0 1

0 0 0

0 0 0
D .

To computeÊw12
, for instance, one usesÊw12

5ei (2w12w2), i.e., the ‘‘phase’’ part ofG(Ĉ12), the

basis states$ 1
2peiw1, 1

2pei (2w11w2), 1
2peiw2%, and the inner product

^CuF&5E
0

2pE
0

2p

dw1 dw2 C* F. ~95!

The operatorsÊw i j
are explicitly not unitary. WhereasÊw12

•Êw23
5Êw13

it is not true that

@Êw12
,Êw23

#5Êw13
: the phase operators do not commute.

There are many ways of turningÊw i j
into a unitary operatorEŵ i j

while still preserving the

decomposition ofĈi j into a phase and a diagonal part. What is unique of the~1,0! representation
is that it is also possible to find unitary operatorsÊŵ i j

such thatÊŵ i j
preserves the polar decom

position of Ĉi j and simultaneously produces commuting phase operators:@Êŵ i j
,Êŵkl

#50. This
remarkable choice is

Eŵ12
5S 0 1 0

0 0 1

1 0 0
D , Eŵ23

5S 0 1 0

0 0 1

1 0 0
D , Eŵ13

5S 0 0 1

1 0 0

0 1 0
D . ~96!

It is not possible to convertÊw i j
into a unitary operatorEŵ i j

that will have all of the above
enumerated properties when the total number of photons is greater than 1.

This result on the existence of commuting unitary phase operators is expected, as the
sentation~1,0! is pertinent to the classical description of a three-channel interferometer,15 for
which the phases are~of course! expected to commute.
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V. DISCUSSION AND CONCLUSION

In deriving the representationG acting over the functions defined over the maximal torusH of
G5SU(n11), the main hinge is the decomposition of the Lie algebra as per Eq.~35!. This is
equivalent to requiring that the dimension of the subgroupH or, equivalently, the rank of the grou
G @i.e., n in the case of SU(n11)# is exactly of complementary dimension to the stabilizer of
highest weight state.

The question arises now as to whether there are other representations and/or groupsG which
allow a similar decomposition. The answer is—unfortunately—no, i.e., we need some exte
to the above-presented picture in order to accommodate other groups. We discuss why
such an obstruction in the Appendix.

The technique adopted in this paper has been limited in scope to unirreps of SU(n11) with
highest weights of the type~l, 0,...!. However, it is possible to extend the formalism presen
here to general irreps by suitably enlarging the subgroup over which the coherent stat
defined. Irreps of the type~l, m, 0,...! are particularly interesting as they can be expected to h
applications to the description of polarized beams. For irreps with highest weight~l, m, 0,...!, the
appropriate subgroupk of SU(n11) is S(U(2)3U(1)3...3U(1)): the basis states and th
representationG will then be expressed16 in terms of Wigner functions over this subgroup.

The major result of this paper is a realization of the su(n11) Lie algebra~or, more precisely,
of the complex extension of this algebra!, appropriate for irreps with integral highest weights
the form~l, 0,...!, for which basis functions and generators are expressed in terms of expon
functions and derivatives of phase angles. This would appear to be particularly suitable for
cations to phase states, and for the study of the asymptotic limits of a representation a
appropriate limit of Wigner functions.

Although this has been done explicitly only for SU~2! and SU~3!, the parameters which ente
in the realization can be generally interpreted as projective coordinates, related to SU(n11)
Wigner functions, and understood physically as related to the distribution ofl photons between
n11 fields.
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APPENDIX A: HOW TO COUNT THE DIMENSION OF THE STABILIZER

In this section, we show why our construction only works for algebras which haveAn as their
complexification, and for which representations ofAn our construction is possible.

Let h be the Cartan subalgebra of a Lie algebra of one of the classical groups@i.e., SU(n),
SO(2n11), Sp(2n), SO(2n) or their noncompact versions#. A good comprehensive review o
Lie algebra structure is Refs. 17 and 18.

Let f a be a lowering operator corresponding to the positive roota: in order thatf axlÞ0 it is
necessary and sufficient that (a,l)>0, where~ , ! is the Killing form. Notice that such lowering
operators form a nilpotent subalgebra: we denote bytl the subset of positive roots for whic
(l,a).0.

Now, let $a i% i 51...l be a set of simple~positive! roots, $v i% i 51...l the corresponding set o
weights, i.e., (v i ,a j )5d i j .

Any dominant weight and positive root can be written as

l5(
i 51

n

l iv i , l iPN1 , a5(
i 51

n

mia i , miPN1 . ~A1!
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Let us fix a fundamental weightvk ~which is equivalent to choosing a node on the Dynk
diagram!.

For a given Lie algebrag ~i.e., for a given Dynkin diagram! one can compute the number o
roots in tvk

and check to see, as we choose different nodes of the Dynkin diagram, if the
sufficiently many roots to allow a decomposition of the type proposed in Eq.~35!.

The results are here below~we refer to the Planches in Ref. 18!.
~1! SU(n11) (An): choosing thekth node there arek(n112k) positive roots intvk

. The
minimum for tvk

is n, which occurs whenk51 or k5n. These choices correspond, respective
to the representations~l, 0,...! or ~0,..., 0,l!.

~2! SO(2n11) (Bn ,n.1): choosing thekth node there arek1k(n2k)1k(n112k)
52k(n112k) positive roots intvk

. The minimum is 2n, which is bigger than the rankn of the
group: it is impossible to construct SO(2n11) on the torus.

~3! Sp(2n) (Cn ,n.2): choosing thekth node there arek(n2k)1k1k5k(n122k) posi-
tive roots. The minimum isn11, and this is again greater than the rankn of Sp(2n).

~4! SO(2n) (Dn): choosing thekth node there arek(n2k)1k1k5k(n122k) positive
roots, the minimum isn11, which is also greater than the rank of the group.
As we see, the minimal number is equal to the rank of the algebra only forAn .

APPENDIX B: A COHOMOLOGICAL PERSPECTIVE ON S-MATRIX THEORY

We wish to draw the attention of the reader to the following interesting ‘‘cohomologi
interpretation of the solution for the operatorS.

In the construction of the coefficientsSn of the operatorS from the ratios of Eq.~77! as
described above, it is nota priori clear that the coefficientSn corresponding to a nontrivia
partition n defined starting from the trivial partition does not depend on the particular ‘‘path’
have followed to reach the given partitionn. Indeed—in general—there are different ways
getting to a given partitionn starting from the trivial one; for instance, we have

~l,0,0,0,...!°

C21

~l21,1,0,0,...!°

C31

~l22,1,1,0,...! or ~B1!

~l,0,0,0,...!°

C31

~l21,0,1,0,...!°

C21

~l22,1,1,0,...!. ~B2!

We have to make sure that the coefficientS(l22,1,1,0,...)defined along these two different ‘‘paths
does not depend on the choice of path. We observe here that this in particular implies th
following cocyclecondition holds

Rn,n8Rn8,n9Rn9,n51 ~B3!

for any partitionsn, n8, n9 which are adjacent in the following sense: Two partitionsn, n8 of l are
said to beadjacentif there existiÞ j such that

nk5nk81d ik2d jk , k51,...,n11. ~B4!

Let us verify this fact and consider the small loop

n→
Ci j

n8→
Cjk

n9→
Cki

n, ~B5!

n r85n r1d ir 2d j r , n r95n r81d j r 2dkr5nk1d ir 2dkr , ~B6!

and the associated cocycle condition
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Rnn8Rnn8Rn8n95
yji* ~l1r i~n8!!

yi j ~l1r j~n!!

yk j* ~l1r j~n9!!

yjk~l1rk~n8!!

yik* ~l1rk~n!!

yki~l1r i~n9!!
, ~B7!

which, according to Eq.~B3!, should be 1.
Using the expressions foryi j , it can be verified explicitly that, if we setv1[1, then

~yji !*

yi j
5S v j* v j

v i* v i
D , v1[1. ~B8!

Using Eq.~B8!, one sees at once that they dependence drops out Eq.~B7!. Moreover, sincei, j,
k are distinct indices, one checks also that

r i~n9!5r i~n8!, r j~n9!5r j~n!, rk~n!5rk~n8!. ~B9!

Therefore Eq.~B7! is consistent with Eq.~B3!. In a similar way, one can easily check th
Rn,n85(Rn8,n)21. This equation, together with Eq.~B7!, define acocycleover partitions.
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