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Bases for SU~3! irreps are constructed on a space of three-particle tensor products
of two-dimensional harmonic oscillator wave functions. The Weyl group is repre-
sented as the symmetric group of permutations of the particle coordinates of these
spaces. Wigner functions for SU~3! are expressed as products of SU~2! Wigner
functions and matrix elements of Weyl transformations. The constructions make
explicit use of dual reductive pairs which are shown to be particularly relevant to
problems in optics and quantum interferometry. ©1999 American Institute of
Physics.@S0022-2488~99!01506-6#

I. INTRODUCTION

Considerable progress has been made in the development of systematic algorithms fo
puting matrix elements of the infinitesimal generators of Lie groups in an arbitrary represen
Much less is known about the matrices of finite group elements other than those of SU~2!, and the
related groups E~2!, HW~1!, and SU~1,1!.1

The matrix elements of finite SU~2! transformations are the well-known WignerD functions.
These functions are used in many areas of physics, notably in nuclear, atomic, and mo
spectroscopy. Recently, it has been shown that the Wigner functions of SU~2! ~Ref. 2! and higher
unitary groups3 are needed in the analysis of quantum interferometers. Because of the Peter
theorem, Wigner functions also play a central role in the theory of harmonic analysis.

We consider here the Wigner functions for SU~3!; such functions are needed, for example,
computing SU~3! Clebsch–Gordan coefficients in an SO~3! basis.4 Expressions for SU~3! Wigner
functions were first derived, to our knowledge, by Chaco´n and Moshinsky,5 in terms of SU~2!
Wigner functions and matrix elements of Weyl reflection operators. Matrix elements of
Weyl reflections were derived by Macfarlaneet al.6 and Mukunda and Pandit.7 The latter gave the
matrix elements as products of three SU~2! Clebsch–Gordan coefficients. Chaco´n and Moshinsky
gave expressions for matrix elements of other Weyl reflections as SU~2! Racah coefficients. Thes
results raise the question: what does the Weyl group have to do with SU~2!? The answer appear
to be that basis states for SU~3! irreps ~irreducible representations! are naturally expressed in a
SU~2!-coupled basis, and elements of the Weyl group for SU~3!, which is isomorphic to the
permutation groupS3 , act on such states as SU~2! recoupling operators. More explicitly, if on
constructs basis states for SU~3! by SU~2! coupling the wave functions for three particles
two-dimensional harmonic oscillator states, then the Weyl reflection operators permute the
dinates of the particles. A similar interpretation of the Weyl reflections was given by Gal
Lipkin8 as the permutations of a coupled system of three spin-1

2 quarks.
In deriving our results, we make use of two mutually commuting subgroups, U~3! and U~2!,

of U~6!. When acting within the space of a fully symmetric representation of U~6!, these sub-
groups are said to form adual reductive pair.9 Such dual pairs are particularly relevant f

a!Permanent address: Department of Physics, Macquarie University, Sydney, New South Wales 2109, Australia.
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describing the properties of three particles in a two-dimensional harmonic oscillator or
spin-half quarks. An overview of these and other dual pairs and their uses in optics and qu
interferometry is given in the Discussion section at the end of this paper.

II. PARAMETRIZATION OF SU „3…

Many parametrizations of SU~3! elements are possible. The most useful ones would appe
arise from factorization of SU~3! group elements into products of subgroup elements wh
Wigner functions are known. Three obvious candidates for suitable subgroups are the
SU(2)12, SU(2)13, and SU(2)23, the three SU~2! subgroups whose root systems are subsyst
of the SU~3! root system shown in Fig. 1. We denote an element of SU(2)i j by Ri j (a,b,g),
where~a,b,g! are the standard Euler angles.

Murnaghan10 has shown that a possible parametrization of an elementgPSU(3) is given by

g~a1 ,b1 ,a2 ,b2 ,a3 ,b3 ,d1 ,d2!5e2 i ~h1d11h2d2!R23~a1/2,b1 ,2a1/2!

3R13~a2/2,b2 ,2a2/2!R12~a3/2,b3 ,2a3/2!, ~1!

whereh1 andh2 are elements of the Cartan subalgebra.
A similar parametrization, with a different ordering, was proposed by Recket al.3 These

authors showed that one can factor a generalN3N unitary matrix as a product of U~2! matrices
and an overall phase, with the added insight that each U~2! transformation can be realized expe
mentally as an optical element.

In this paper, we choose a parametrization that takes advantage of the fact that, in a ca
basis, one constructs U(N) irreps in a basis that reduces a particular U(N21) subgroup. Thus, an
arbitrary SU(N) matrix is factored

~2!

whereXN21 andYN21 are SU(N21) matrices;I N22 is the (N22)3(N22) identity matrix. For
SU~2! @with the indices ordered~z,x,y!# this gives the usual factorizationR(a,b,g)
5Rz(a)Ry(b)Rz(g). For gPSU(3), weobtain

g~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!5R23~a1 ,b1 ,g1!R12~a2 ,b2 ,a2!R23~a3 ,b3 ,g3!. ~3!

The parameters in this expression are derived for an arbitrarygPSU(3) in the Appendix, by a
method communicated to us by J. Repka.

FIG. 1. Three SU~2! subsystems of the SU~3! root system.
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All of the above factorizations enable one to express the SU~3! Wigner functions in terms of
matrix elements of finite SU~2! transformations.

III. BASIS STATES

A. Highest weight states

An SU~3! irrep is characterized by a highest weight~l,m! and a corresponding highest weig
stateuf~l,m!&, defined as follows. The su~3! Lie algebra is spanned in the usual way by the sub
of u~3! operators

Ĉi j , i , j raising operators,

Ĉi j , i . j lowering operators, ~4!

ĥ15Ĉ112Ĉ22, ĥ25Ĉ222Ĉ33, Cartan operators,

where the$Ĉi j % operators satisfy the commutation relations

@Ĉi j , Ĉkl#5d jkĈil 2d i l Ĉk j . ~5!

The highest weight stateuf~l,m!& then satisfies the equations

Ĉi j uf~l,m!&50, i , j ,
~6!

ĥ1uf~l,m!&5luf~l,m!&, ĥ2uf~l,m!&5muf~l,m!&.

Without loss of generality, we suppose thatuf~l,m!& is also an eigenstate of the operatorĈ33

with zero eigenvalue. It then satisfies the equations

Ĉ11uf~l,m!&5~l1m!uf~l,m!&, Ĉ22uf~l,m!&5muf~l,m!&, Ĉ33uf~l,m!&50. ~7!

The Hilbert space,H(l,m), for the SU~3! irrep with highest weight~l,m! thereby becomes a Hilber
space for a U~3! irrep of highest weight (l1m,m,0).

B. The Gel’fand–Tsetlin basis

To use the factorization of Eq.~3! in computing Wigner functions, we need a basis for t
Hilbert spaceH(l,m) that reduces the SU~3!.SU~2!23 subgroup chain. Such a basis is the so-cal
canonical or Gel’fand–Tsetlin basis;11

H Up q
r L [Ul1m m 0

p q
r

L ;
l1m>p>m>q>0

p>r>q J , ~8!

which reduces the chain

U~3!

~l1m,m,0!
.

U~2!23

~p,q!
.

U~1!3

r , ~9!

where U~1!3,U~2!23 is the subgroup whose Lie algebra is spanned byĈ33.
The Gel’fand states are eigenstates of the weight operators; i.e.,

ĈiiUp q
r L 5n iUp q

r L , i 51,2,3, ~10!
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with

n15l12m2p2q, n25p1q2r , n35r . ~11!

One sees that the components of a weightn5(n1 ,n2 ,n3) add up tol12m. They are linearly
dependent and insufficient to define a state uniquely. However, the Gel’fand-Tsetlin state
reduce the subgroup chain

U~3!

~l1m,m,0!
.

SU~2!23

I
.

U~1!23

M , ~12!

and have SU(2)23 quantum numbers,I andM, related top, q, andr by

I 5 1
2~p2q!, M5 1

2~n22n3!5 1
2~p1q!2r . ~13!

Thus, the weightn and the SU(2)23 angular momentumI together uniquely define a basis sta
and, with the above relationships betweenn, I andp, q, r, we can relabel a Gel’fand–Tsetlin sta

unI &[Up q
r L . ~14!

We shall refer to the basis$unI &% either as a Gel’fand–Tsetlin basis or as a weight basis.

C. An SU „2…-coupled realization

The Gel’fand–Tsetlin states can be constructed explicitly as three-particle SU~2!-coupled
products of two-dimensional harmonic-oscillator states.

The construction makes use of a well-known duality relationship~discussed by Moshinsky
and Chaco´n5! between U~3! and U~2! as commuting subgroups of U~6!. Let $aim

† ,aim ; i
51,...,3,m51,2% denote~two-dimensional! harmonic oscillator raising and lowering operators f
three particles. The operators$aim

† ajn% then span a u~6! Lie algebra. This algebra has two mutual
commuting subalgebras: u~3! spanned by the operators

Ĉi j 5 (
m51

2

aim
† ajm , ~15!

andu(2) spanned by

B̂mn5(
i 51

3

aim
† ain . ~16!

The algebras u~3! and u(2) are examples of a so-calleddual pair.9 The use of a dual pair
„u(N),u(n)… and the corresponding direct sum subalgebra u(N)1u(n),u(Nn) are well known,
for example, in the classification of states ofN particles in ann-dimensional harmonic oscillator
cf., for example, the paper by Hagen and MacFarlane12 which presents a method for deriving th
SU(m)3SU(n) content of SU(mn) and provides tables for the SU~6!→SU~3!3SU(2) branching
rules.

Now observe that, ifu0& is the state in which all particles are in their respective harmo
oscillator ground states, the state

uf~l,m!&5~a11
† !l~a11

† a22
† 2a12

† a21
† !mu0& ~17!

satisfies all the conditions of Eq.~6!. Thus, uf~l,m!& is an ~unnormalized! SU~3! highest weight
state. But it also satisfies
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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B̂12uf~l,m!&50,
~18!

B̂11uf~l,m!&5~l1m!uf~l,m!&, B̂22uf~l,m!&5muf~l,m!&,

which means thatuf~l,m!& is simultaneously a highest weight state foru(2) with highest weight
(l1m,m) and a highest weight state for u~3! with highest weight (l1m,m,0), cf. Eq. ~7!.
Moreover, since the u~3! andu(2) operators commute with one another, we can identify all
desired SU~3! basis states with those of the subset of U(3)3U(2) states that are ofU~2! highest
weight. This result is a special case of a general result for dual pairs;9 for any N and n, the
commuting algebras u(N) and u(n) have a complete set of highest weight states in comm
within the carrier space of a fully symmetric irrep of the Lie algebra u(Nn) @i.e., an irrep of
highest weight~s,0,...!, where s, equal tol12m in the present case, is the total number
harmonic oscillator quanta#.

It is well known that basis states for ansu(2) irrep of spinsi are given by

usi ,mi&5
~ai1

† !si1mi~ai2
† !si2mi

A~si1mi !! ~si2mi !!
u0&. ~19!

These states are also a basis for au(2) irrep of highest weight (2si ,0). They are tensor product
of pairs ofu(1) irreps ofu(1) spin (si1mi) and2(si2mi), respectively. A Gel’fand basis fo
SU~3! can likewise be constructed from triple tensor products ofsu(2) irreps.

Theorem: The weight basis, defined by Eqs.~8!–~14!, can be expressed, to within arbitra
phase factors:

unI &5@ u 1
2 n1& ^ @ u 1

2 n2& ^ u 1
2 n3&]

I ] l/2
l/2 ,

5 (
m1m2m3~N!

~ 1
2 n3 ,m3 ; 1

2 n2 ,m2uI ,N!~ I ,N; 1
2 n1 ,m1u 1

2 l, 1
2 l!u 1

2 n1 ,m1&u
1
2 n2 ,m2&u

1
2 n3 ,m3&,

~20!

with n5(n1 ,n2 ,n3).
Proof: It follows, from Eq. ~15!, that

Ĉii unI &5n i unI &. ~21!

Thus, the statesunI & have the same weights as their Gel’fand–Tsetlin counterparts. It remai
show that a stateunI &, defined by Eq.~20!, has SU(2)23 angular momentumI.

Consider a set of states for particles 2 and 3 which span an irrep of u(2)3u(2),u(3)
3u(2), where the u~2!,u~3! subalgebra is spanned by the operators$Ĉ23,Ĉ32,Ĉ22,Ĉ33%. If the
two-particle states transform according to a u~2! irrep ~p,q! then, by duality, they also belong t
u(2) irreps of the same highest weight,~p,q!. Thus, if a state has su~2! angular momentumI
5(p2q)/2, it also hassu(2) angular momentumI. It follows that thesu(2)-coupled two-particle
state,

@ u 1
2n2& ^

1
2n3] N

I , ~22!

belongs to au(2) irrep ~p,q! with

p1q5n21n3 , p2q52I , ~23!

and therefore to the u~2! irrep with the same labels~p,q! and to the irrep with angular momentum
I 5 1

2(p2q) of the subalgebra su~2!,u~2!. This completes the proof.
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lar to

pond

3609J. Math. Phys., Vol. 40, No. 7, July 1999 Representations of the Weyl group Wigner . . .

Downloaded
IV. MATRIX ELEMENTS OF WEYL OPERATORS

The Weyl group is generated by reflections of the roots in the hyperplanes perpendicu
each of the roots. Leta i j denote the SU~3! root whose root vector isĈi j and letPi j denote the
reflection in the line perpendicular toa i j . Then, for example,

P12:a12→a21, a13→a23, a32→a31, ~24!

andP12
2 51. Thus, one obtains the known result that the Weyl group for SU~3! is isomorphic to the

symmetric groupS3 of permutations of three objects and that the subset of reflections corres
to transpositions.

By writing Eq. ~20! in the form

CnI~123![^123unI &5@cn1
~1! ^ @cn2

~2! ^ cn3
~3!# I #l/2

l/2 , ~25!

we obtain representations of the Weyl group for SU~3! in which, for example,

@P12CnI #~123!5^123uP12unI &5CnI~213!,

@P13CnI #~123!5CnI~321!, ~26!

@P132CnI #~123!5@P12P13CnI #~123!5CnI~312!.

It follows that

@P12CnI #~123!5@cn1
~2! ^ @cn2

~1! ^ cn3
~3!# I #l/2

l/2

5(
I 8

~21!~n322I 22I 812m2l!/2A~2I 11!~2I 811!

3H n1/2 n3/2 I 8

n2/2 l/2 I J @cn2
~1! ^ @cn1

~2! ^ cn3
~3!# I 8#l/2

l/2 , ~27!

where$d
a

e
b

f
c% is a Wigner 6-j symbol. Thus, we obtain the matrix elements

^n8I 8uP12unI &5dn
18 ,n2

dn
28 ,n1

dn
38 ,n3

~21!~n322I 22I 812m2l!/2A~2I 11!~2I 811!H n1/2 n3/2 I 8

n2/2 l/2 I J .

~28!

In a similar way one determines that

^n8I 8uP123unI &5dn
18 ,n3

dn
28 ,n1

dn
38 ,n2

~21!~n11n222I 812l!/2A~2I 11!~2I 811!H n1/2 n2/2 I 8

n3/2 l/2 I J
~29!

and

^n8I 8uP132unI &5dn
18 ,n2

dn
28 ,n3

dn
38 ,n1

~21!~n112I 12m1l!/2A~2I 11!~2I 811!H n1/2 n3/2 I 8

n2/2 l/2 I J .

~30!
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To check these results, it is useful to apply them to the highest weight state. We find t

P12U~l1m,m,0!
m

2 L 5~21!mU~m,l1m,0!
l1m

2 L ,

P123U~l1m,m,0!
m

2 L 5U~0,l1m,m!
l

2L , ~31!

P132U~l1m,m,0!
m

2 L 5~21!mU~m,0,l1m!
l1m

2 L ,

consistent with the known action on the highest weight shown in Fig. 2. As expected, Weyl
elements map extremal states into other extremal states.

V. WIGNER FUNCTIONS

Matrix elements of SU(2)23 group elements are given immediately in the$unI &% basis as
SU~2! Wigner functions; viz.,

^n8I 8uR23~a,b,g!unI &5dn
18 ,n1

d I 8ID~n282n38!/2,~n22n3!/2

I
~a,b,g!, ~32!

whereDM ,N
I is a standard SU~2! Wigner function.

To evaluate matrix elements of the other SU(2)i j subgroups, we make use of the fact~noted
by Chaco´n and Moshinsky5! that the different SU(2)i j subgroups are Weyl transforms of on
another. Thus, for example, the infinitesimal generators of SU(2)12

Ĉ12, Ĉ21, 1
2~Ĉ112Ĉ22!, ~33!

are related to those of SU(2)23 by

Ĉ125P132Ĉ23P132
215P132Ĉ23P123. ~34!

It follows that

R12~a,b,g!5P132R23~a,b,g!P123. ~35!

Similarly, one finds that

R13~a,b,g!5P12R23~a,b,g!P12. ~36!

FIG. 2. The action of Weyl group elements on the highest weight of an SU~3! irrep.
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Thus, with the parametrization given by Eq.~3!, we obtain the SU~3! Wigner functions

Dn8I 8,nI
~lm!

~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!

5( D
~n282n38!/2,~t22s3!/2

I 8
~a1 ,b1 ,g1!^~n18 ,t2 ,s3!I 8uP132u~s3 ,n18 ,t2!J&

3D
~n182t2!/2,~n12s2!/2

J
~a2 ,b2 ,a2!^~s3 ,n1 ,s2!JuP123u~n1 ,s2 ,s3!I &

3D~s22s3!/2,~n22n3!/2
I ~a3 ,b3 ,g3!, ~37!

where the sum is over alls, t, and J values allowed by Eqs.~11!, ~13!, and the betweennes
conditions~8!.

VI. MATRIX ELEMENTS OF SO „3…

If SO~3!,SU~3! is the subgroup whose infinitesimal generators are the angular mome
operators

L̂z52 i ~Ĉ232Ĉ32!, L̂x52 i ~Ĉ312Ĉ13!, L̂y52 i ~Ĉ122Ĉ21!, ~38!

then we have the identities

L̂z52Î y , L̂x522F̂y , L̂y52T̂y , ~39!

whereÎ y , T̂y andF̂y belong to the Lie algebras of SU(2)23, SU(2)13, and SU(2)12, respectively.
Thus, with the standard parametrization of an SO~3! element

V~a,b,g!5e2 iaL̂ze2 ibL̂ye2 igL̂x, ~40!

we have the identity

V~a,b,g!5R23~0,2a,0!R12~0,2b,0!R23~0,2g,0!5R23~0,2a,0!P132R23~0,2b,0!P123R23~0,2g,0!,

~41!

and the matrix elements

^n8I 8uV~a,b,g!unI &5(
stJ

d
~n282n38!/2,~t32s3!/2

I 8
~2a!

3^~n18 ,t3 ,s3!I 8uP132u~s3 ,n18 ,t3!J&d~n182t3!/2,~n12s2!/2

J
~2b!

3^~s3 ,n1 ,s2!JuP123u~n1 ,s2 ,s3!I &d~s22s3!/2,~n22n3!/2
L ~2g!,

~42!
wheredMN

I is a reduced SU~2! Wigner function.

VII. DISCUSSION

We have derived matrix elements of Weyl group elements and expressions for SU~3! Wigner
functions by making use of the dual actions of U~3! and U~2! on the carrier spaces of symmetr
representations of U~6!.

The groups U~3! and U~2! are special cases of U(N) and U(n) groups that form dual pairs on
the carrier spaces of fully symmetric irreps@i.e., irreps of highest weight~s,0,...!# of U(N3n);
they are also dual on a direct sum of such spaces.

The essential property of a dual pair9,13 is that the constituent groups are the centralizers
each other’s actions on a specified vector space. The classic example is the Schur–Weyl p14 of
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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unitary, U(n), and symmetric,SN , groups which have commuting actions on theN-fold tensor
product,CN3n, of a complexn-dimensional vector space,Cn. The Schur–Weyl duality has bee
used effectively to relate the characters of unitary groups, which are infinite Lie groups, to
of the finite symmetric groups. It also underlies the famous Littlewood–Richardson rules15 for
tensor products and the methods of King, Wybourne, and others16 for inferring branching rules.

Another famous dual pair comprises the orthogonal, O(N), and symplectic, Sp(n,R), groups
acting on theN-fold tensor productHN3n of the n-dimensional harmonic oscillator Hilbert spac
Hn.17 Whereas the Schur–Weyl duality relates the properties of a finite-dimensional irrep of
group to those of a discrete group, the symplectic-orthogonal duality relates the properties
infinite-dimensional irrep of a noncompact Lie group to those of a compact Lie group. This d
was used, for example, to infer the Sp(n,R)→U(n) branching rules from known properties o
O(N).18

It is interesting to note that U(n)3U(N) and Sp(n)3O(N) are both direct products of dua
pairs on a common harmonic oscillator Hilbert spaceHN3n. Thus, one has the useful concept
dual subgroup chains

Sp~n,R!.U~n!↔O~N!.U~N!, ~43!

involving the two dual pairs Sp(n,R)3O(N) and U(n)3U(N). These duality relations have bee
used19 to relate the representations and tensor products of U(N) in an O(N) basis to those of
Sp(n,R) in a U(n) basis. They also play an essential role in the microscopic theory of nu
collective motion20 with HN3n regarded as the Hilbert space forN-particles in ann-dimensional
space.

It should be mentioned that dual subgroup chains were discovered long ago by Brauer21 who
extended the Schur–Weyl duality by observing that the centralizer of the orthogonal sub
O(n),U(n) on CN3n is a group~also an algebra! that contains the symmetric groupSN as a
subgroup@cf. Ref. 13 for a discussion of the O(n) –Brauer duality#.

The physical significance of several of the above dual pairs is illustrated effectively by a
cations to optics and quantum interferometry, applications which motivated the present inve
tion.

It has long been known that geometrical optics is an application of Hamiltonian mecha
Moreover, in the linear approximation, the transformation of a light beam by an optical ele
such as a lens, is an Sp~2,R! transformation. This observation is important because it means
the combined effects of many optical elements can be inferred by matrix multiplication.
importantly, one can go beyond the linear approximation to compute the aberrations of an
system and how to correct them. The techniques for doing this have been developed into a
by Dragt and his students22 and have revolutionized the design of charged-particle and op
beam systems; an introduction to the subject has been given by Guillemin and Sternberg.23

We note that there also exists a dual group action on optical systems. If a beam of li
charged particles is polarizable or has intrinsic spin degrees of freedom, then, in addition
symplectic group action on its spatial phase-space coordinates, there is a dual orthogona
action on its polarization state. Thus, for example, for light, with two linearly independent p
izations, or for spin-half particle beams, one has a dual Sp(2,R)3O(2) action on the combined
space-spin degrees of freedom.@Note that we mean by Sp~2,R! the rank-2 group of real canonica
transformation of a four-dimensional phase space; some authors denote the same gr
Sp~4,R!.# Thus, one can extend the dynamical group for an optical system from Sp~2,R! to the
direct product group Sp(2,R)3O(2) and thereby admit polarizing~spin rotation! as well as
focusing elements. One can further extend the dynamical group to Sp(4,R).Sp(2,R)3O(2) to
include combinations of the two.@It is of interest to note that a general polarizing element is
restricted to O~2! and may induce a U~2! transformation that lies inside Sp~4,R! but which does
not commute with the group Sp~2,R! of spatial transformations.#

Such extensions are relevant for describing the quantum interference of light or pa
beams. In this case, one is interested in the detailed quantum states of many-photon~many-
 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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particle! system. Thus, one is interested in the unitary representations of the dynamical grou
as we have shown explicitly for U~3!3U~2! in Sec. III C, the irreps of a dynamical group a
determined by those of its dual and vice versa.

It has recently been proposed that quantum interferometers should be analyzed in te
unitary groups.2,3 A typical quantum interferometer comprises a sequence of elements in w
two input modes of the electromagnetic field~beams! are transformed linearly into two outpu
modes. It has been shown that the transformation of the two modes by such an optical ele
a U~2! transformation@an SU~2! transformation together with a phase shift#.2 It has also been
shown2 that a so-calledactive interferometer can similarly be represented by an SU~1,1! transfor-
mation@note that SU~1,1! is isomorphic to Sp~1,R!# and that a linear optical system, comprisingn
input modes, is represented by an SU(n) transformation.3

The use of dual pairs provides a natural framework for the extension of these metho
include polarization and optical elements whose parameters depend on the polarization stat
input fields. To include polarization, one simply extends the U(n) group to U(n)3U(2) and to
include combinations of polarizers and beam splitters, for example, one extend
U(2n).U(n)3U(2). This is particularly relevant in the quantal context because the input s
available tos photons, when there aren input modes and two linearly independent polarizatio
for each photon, span an irrep of highest weight~s,0,...! of the group U(2n). The duality prop-
erties imply that the subrepresentations available to the subgroup U(n)3U(2), on restriction of
the U(2n) representation~s,0,...!, are the so-called two-rowed irreps of type (l1 ,l2,0,...)
3(l1 ,l2) ~i.e., irreps whose highest weights have no more than two nonzero components!. This
follows simply because a U~2! weight has only two components and the two subgroups, U(n) and
U~2!, being each other’s duals, have highest weight states in common. This results in an eno
simplification in the analysis of a multi-mode interferometer.@Note that, as usual, the SU(n) labels
are obtained by taking differences of U(n) labels, so that the U(n) irrep (l1 ,l2,0,...) restricts to
the SU(n) irrep (l12l2 ,l2,0,...).#

An important application of SU~3! interferometry is the experimental test of Bell’s theore
without inequalities, known as the GHZ test.24 Standard tests of Bell’s theorem, designed to t
the hypotheses of local realism against quantum theory, involve spacelike-separated measu
of two polarization-correlated fields, and local realism establishes an upper bound on the p
degree of correlations between the two fields. The GHZ test, in its ideal form, yields one e
mental result for local realism and an entirely different result for quantum theory. Thus, a
ticular observation determines which theory is correct, and an inequality is not necessary.
context of SU~3! Wigner functions, the important aspect of the GHZ test is that three polariza
correlated fields are used, and therefore U~3!3U~2!, accounting for three fields and two polariz
tions, is appropriate here.

Consider, for example, the SU(n) transformations of a one-rowed irrep,~l,0,...!, by a system
which ignores the polarization. For such an irrep, the highest weight state can be identifie
the state

uf~l,0,...!&5~a11
† !lu0&. ~44!

of maximum polarization. Hence, all states of the SU(n) irrep with this highest weight state hav
maximum polarization. Thus, the SU~2! coupling becomes trivial and basis states for the irrep
labelled simply and uniquely by their weights. It follows that the basis states of the gener
version of the theorem of Sec. III C are simply the states

un&5
~a11

† !n1

An1!

~a21
† !n2

An2!
¯

~an1
† !nn

Ann!
u0&. ~45!

The elements of the Weyl group are seen to act on such states by simply permuting the c
nents$n i% of the weights.
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For the general two-rowed irreps one must include explicit SU~2! coupling, as shown for
SU~3! in Sec. III C. For example, basis states for a two-rowed irrep of U~4! are highest weight
states of the dual algebra U~2! and have the general form

@ u 1
2n1& ^ @ u 1

2n2& ^ @ u 1
2n3& ^ u 1

2n4&]
I ] J] l/2

l/2 . ~46!

Thus, computing matrix elements of Weyl group elements for any two-rowed SU(n) irrep never
involves more than SU~2! recoupling.
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APPENDIX: FACTORIZATION OF AN SU „3… ELEMENT

Claim: Any elementgPSU(3) can be parametrized and expressed as a product

g~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!5R23~a1 ,b1 ,g1!R12~a2 ,b2 ,a2!R23~a3 ,b3 ,g3!, ~A1!

whereR23(a,b,g)PSU(2)23, R12(a,b,a)PSU(2)12, and the$SU(2)i j % are the subgroups o
SU~3! defined by the subsystems of roots shown in Fig. 1.

Proof: First observe that any SU~3! matrix can be brought to the form

S * * *

* * *
0 * *

D ~A2!

by an SU(2)23 transformation; viz.

S 1 0 0

0 Y* Z*

0 2Z Y
D S x * *

y * *
z * *

D 5S x * *
A12uxu2u * *

0 * *
D , ~A3!

whereY5y(12uxu2)2
1
2, and Z5z(12uxu2)2

1
2 and we have used the fact thatuxu21uyu21uzu2

51. A subsequent SU(2)12 transformation then brings the matrix to SU(2)23 form; i.e.,

S x* A12uxu2u 0

2A12uxu2u x 0

0 0 1
D S x * *

A12uxu2u * *

0 * *
D 5S 1 0 0

0 * *
0 * *

D . ~A4!

Thus, we determine that

S x* A12uxu2u 0

2A12uxu2u x 0

0 0 1
D S 1 0 0

0 Y* Z*

0 2Z Y
D S x * *

y * *
z * *

D 5S 1 0 0

0 * *
0 * *

D . ~A5!

Inversion of this equation gives

S x * *
y * *
z * *

D 5S 1 0 0

0 Y 2Z*

0 Z Y*
D S x 2A12uxu2 0

A12uxu2 x* 0

0 0 1
D S 1 0 0

0 * *
0 * *

D , ~A6!
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which proves the claim with suitably chosen parameter values; e.g.,

x5e2 ia2 cos~b2/2!, A12uxu25sin~b2/2!. ~A7!
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