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Bases for S(B) irreps are constructed on a space of three-particle tensor products
of two-dimensional harmonic oscillator wave functions. The Weyl group is repre-
sented as the symmetric group of permutations of the particle coordinates of these
spaces. Wigner functions for $8) are expressed as products of (8UWigner
functions and matrix elements of Weyl transformations. The constructions make
explicit use of dual reductive pairs which are shown to be particularly relevant to
problems in optics and quantum interferometry. 1®99 American Institute of
Physics[S0022-248809)01506-9

I. INTRODUCTION

Considerable progress has been made in the development of systematic algorithms for com-
puting matrix elements of the infinitesimal generators of Lie groups in an arbitrary representation.
Much less is known about the matrices of finite group elements other than thosé2)f & the
related groups &), HW(1), and SU1,1).t

The matrix elements of finite @) transformations are the well-known WigriBrfunctions.

These functions are used in many areas of physics, notably in nuclear, atomic, and molecular
spectroscopy. Recently, it has been shown that the Wigner functions(8j 8Re&f. 2 and higher
unitary group3are needed in the analysis of quantum interferometers. Because of the Peter—Weyl
theorem, Wigner functions also play a central role in the theory of harmonic analysis.

We consider here the Wigner functions for @Y such functions are needed, for example, in
computing SW3) Clebsch—Gordan coefficients in an @Dbasis? Expressions for S(B8) Wigner
functions were first derived, to our knowledge, by Chaemd Moshinsky, in terms of SU2)
Wigner functions and matrix elements of Weyl reflection operators. Matrix elements of some
Weyl reflections were derived by Macfarlaaeal ® and Mukunda and PandifThe latter gave the
matrix elements as products of three(8UClebsch—Gordan coefficients. Chacand Moshinsky
gave expressions for matrix elements of other Weyl reflections &2)Racah coefficients. These
results raise the question: what does the Weyl group have to do witt)BWThe answer appears
to be that basis states for 8) irreps (irreducible representationsre naturally expressed in an
SU(2)-coupled basis, and elements of the Weyl group fol&Uwhich is isomorphic to the
permutation grous;, act on such states as &) recoupling operators. More explicitly, if one
constructs basis states for @) by SU?2) coupling the wave functions for three particles in
two-dimensional harmonic oscillator states, then the Weyl reflection operators permute the coor-
dinates of the particles. A similar interpretation of the Weyl reflections was given by Gal and
Lipkin® as the permutations of a coupled system of three $pjnarks.

In deriving our results, we make use of two mutually commuting subgrou(®,and U2),
of U(6). When acting within the space of a fully symmetric representation @), these sub-
groups are said to form dual reductive pai® Such dual pairs are particularly relevant for
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describing the properties of three particles in a two-dimensional harmonic oscillator or three
spin-half quarks. An overview of these and other dual pairs and their uses in optics and quantum
interferometry is given in the Discussion section at the end of this paper.

II. PARAMETRIZATION OF SU (3)

Many parametrizations of SB) elements are possible. The most useful ones would appear to
arise from factorization of S(3) group elements into products of subgroup elements whose
Wigner functions are known. Three obvious candidates for suitable subgroups are the groups
SU(2)12, SU(2),3, and SU(2)3, the three SIR) subgroups whose root systems are subsystems
of the SU3) root system shown in Fig. 1. We denote an element of SiJ(®) R;;j(«,B,7),
where(w,8,7y) are the standard Euler angles.

Murnaghar® has shown that a possible parametrization of an elemer8U(3) is given by

9(ay,B1,a2,B0,a3,B3,01,5,) =€ MOTM%2IR, (0,12 B, — ay/2)
XRyg(@ol2,8,,— apl2)Rif asl2,B3, — asl2), 1)

whereh; andh, are elements of the Cartan subalgebra.

A similar parametrization, with a different ordering, was proposed by Retck® These
authors showed that one can factor a geniralN unitary matrix as a product of (@) matrices
and an overall phase, with the added insight that ea@ tansformation can be realized experi-
mentally as an optical element.

In this paper, we choose a parametrization that takes advantage of the fact that, in a canonical
basis, one constructs N irreps in a basis that reduces a particulaNW{(1) subgroup. Thus, an
arbitrary SUN) matrix is factored

(1) |9 e'“cos(B2)  —sin(B/2)
: X sin(B2) e "“cos(B/2) )
(-) N-1 0 ‘ Iy,

whereXy_; andYy_; are SUN—1) matrices] y_, is the N—2)X (N—2) identity matrix. For
SU(2) [with the indices ordered(z,x,y] this gives the usual factorizatiorR(«,p,7)
=R, (a)Ry(B)R,7). Forge SU(3), weobtain

9(@1,B1,v1,a2,B2,a3,B3,v3) =Ras(a1,B1, Y1) Rid @z, B2,a2) Ry @3, B3, v3) - 3

The parameters in this expression are derived for an arbigargU(3) in the Appendix, by a
method communicated to us by J. Repka.

CA'12 013
SU(2)12 SU(2)13
Csy - » C
32 SUQ)m 2
CA’31 éZl

FIG. 1. Three S(R) subsystems of the SB) root system.
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All of the above factorizations enable one to express thé8s5Wigner functions in terms of
matrix elements of finite S(2) transformations.

[ll. BASIS STATES
A. Highest weight states

An SU(3) irrep is characterized by a highest weightu) and a corresponding highest weight
state|p(\,u)), defined as follows. The $8) Lie algebra is spanned in the usual way by the subset
of u(3) operators

Cij, <] raising operators,

C i>] lowering operators, (4)

ij

h;=C1,—Cp, h,=Cy—Cys, Cartan operators,
where the{Cij} operators satisfy the commutation relations
[éij -ék|]:5jkéi|_5i|ékj- )
The highest weight stateb(\,u)) then satisfies the equations

éIJ|¢()\HU“)>:0’ |<J7
A A ©)
hl|¢()\1ﬁ“)>:)\|¢()\wu“)>! h2|¢()\!lu“)>:lu|¢()\wu)>

Without loss of generality, we suppose théf\,u)) is also an eigenstate of the operafhy,
with zero eigenvalue. It then satisfies the equations

Culo )=+ wld(\,m), Cold\w)=nld(\p)), Cadd(\,u)=0. ()
The Hilbert spacell®#), for the SU3) irrep with highest weight\, ) thereby becomes a Hilbert
space for a \B) irrep of highest weightX + u, u,0).
B. The Gel'fand—Tsetlin basis

To use the factorization of Eq3) in computing Wigner functions, we need a basis for the
Hilbert space™») that reduces the SB)DSU(2),5 subgroup chain. Such a basis is the so-called
canonical or Gel'fand—Tsetlin bast$;

p a\ Mpop 0 AN+ u=p=u=q=0
ro/- . ’ p=r=q ' (8)
which reduces the chain
U(3) U(2)23 — U(1)3
D D

Nmwd = (p@) ~ 1 ©

where U1);CU(2),5 is the subgroup whose Lie algebra is spannedhy.

The Gel'fand states are eigenstates of the weight operators; i.e.,
Ci prq>:Viprq>, =123, (10
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with
Vi=A+2u—p—q, v,=p+q-r, vg=r. (11

One sees that the components of a weight(v,,v,,v3) add up tox+2u. They are linearly
dependent and insufficient to define a state uniquely. However, the Gel'fand-Tsetlin states also
reduce the subgroup chain

u(3) SU(2)23 -, U(1)z
N+ 41,12.0) VA 12
and have SU(2) quantum numberd, and M, related top, g, andr by
I=3(p—a), M=3(v,—vg)=2(p+a)—r. (13

Thus, the weightv and the SU(2); angular momentunh together uniquely define a basis state
and, with the above relationships between andp, q, r, we can relabel a Gel'fand—Tsetlin state

|V|>s‘prq>. (19

We shall refer to the basigvl)} either as a Gel'fand—Tsetlin basis or as a weight basis.

C. An SU(2)-coupled realization

The Gelfand—Tsetlin states can be constructed explicitly as three-partid2)-8aupled
products of two-dimensional harmonic-oscillator states.

The construction makes use of a well-known duality relationgtipcussed by Moshinsky
and Chacn® between W3) and U(2) as commuting subgroups of (6). Let {aiTm -
=1,...,3,m= 1,2 denote(two-dimensionaglharmonic oscillator raising and lowering operators for
three particles. The operatc{ra;,-*majn} then span a(®) Lie algebra. This algebra has two mutually
commuting subalgebras(3) spanned by the operators

2
Cij= mE: anam, (15

andu(2) spanned by

3
Bmn=>, almain - (16)

The algebras @) and u(2) are examples of a so-calletlial pair.® The use of a dual pair
(u(N),u(n)) and the corresponding direct sum subalgebid)u{u(n) Cu(Nn) are well known,
for example, in the classification of statesMparticles in am-dimensional harmonic oscillator;
cf., for example, the paper by Hagen and MacFartandich presents a method for deriving the
SU(m) X SU(n) content of SUfn) and provides tables for the $&)—SU(3) X SU/(2) branching
rules.

Now observe that, if0) is the state in which all particles are in their respective harmonic
oscillator ground states, the state

|p(N,w))=(alp*(al,a),—alal)#0) 17

satisfies all the conditions of E¢6). Thus,|$(\,u)) is an (unnormalized SU(3) highest weight
state. But it also satisfies
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Bid (N, u))=0,
(18)

Bual oA, ) =N+ w)[ s\, 1)), Bod d(N,p))=p|d(N,)),

which means thalip(\,u)) is simultaneously a highest weight state €f2) with highest weight
(N+pu,u) and a highest weight state for3) with highest weight X + u,u,0), cf. Eq. (7).
Moreover, since the(8) andu(2) operators commute with one another, we can identify all the
desired SW3) basis states with those of the subset of U{3)2) states that are @#(2) highest
weight. This result is a special case of a general result for dual péins;any N and n, the
commuting algebras &) and u(n) have a complete set of highest weight states in common
within the carrier space of a fully symmetric irrep of the Lie algebr&ini [i.e., an irrep of
highest weight(c,0,..), where o, equal toA+2u in the present case, is the total number of
harmonic oscillator quana

It is well known that basis states for @m(2) irrep of spins; are given by

~ (ai'l'l)Sieri(aiTz)si*mi

- V(si+my)!(s;—my)!

|si ,m;)

|0). (19

These states are also a basis far(d) irrep of highest weight (,0). They are tensor products
of pairs ofu(1) irreps ofu(1) spin (5+m;) and —(s,—m;,), respectively. A Gel'fand basis for
SU(3) can likewise be constructed from triple tensor products@®) irreps.

Theorem: The weight basis, defined by Eq8)—(14), can be expressed, to within arbitrary
phase factors:

Iwly=[3v)®[|3v2)®|3 va)]'133,

= 2 (3va,mg; 3vy,myL,NYIN; Swg,my 3N, 303 vs,m)|dvo,my) |3 vs,ma),

mympma(N)
(20)
with v=(vq,v,,v3).
Proof: It follows, from Eq.(15), that
éii|V|>:Vi|V|>. (21)

Thus, the statepl) have the same weights as their Gel'fand—Tsetlin counterparts. It remains to
show that a statevl), defined by Eq(20), has SU(2); angular momentunh.

Consider a set of states for particles 2 and 3 which span an irrep ofxw(@)C u(3)
X u(2), where the (2)Cu(3) subalgebra is spanned by the operaf@s;,C3,,C5,,Caq. If the
two-particle states transform according to @)urrep (p,g then, by duality, they also belong to
u(2) irreps of the same highest weiglip,g). Thus, if a state has &) angular momentuni
=(p—q)/2, it also hasu(2) angular momenturh It follows that thesu(2)-coupled two-particle
state,

[13v2)® vl (22
belongs to au(2) irrep (p,g with
p+q=v,t+tvs, p—Qq=2I, (23

and therefore to the(B) irrep with the same labelg,0) and to the irrep with angular momentum
I =3(p—q) of the subalgebra $R)Cu(2). This completes the proof.
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IV. MATRIX ELEMENTS OF WEYL OPERATORS

The Weyl group is generated by reflections of the roots in the hyperplanes perpendicular to
each of the roots. Let;; denote the S(B) root whose root vector ié:ij and letP;; denote the
reflection in the line perpendicular ;. Then, for example,

Piiapp—ag, az—ags,  azy—as, (24

and szz 1. Thus, one obtains the known result that the Weyl group fai8pid isomorphic to the
symmetric groufs; of permutations of three objects and that the subset of reflections correspond
to transpositions.

By writing Eq. (20) in the form

V(1239 =(123v1)=[¢, (1)@[¢,,(2) @ ¢,,(3)]' 1\, (25
we obtain representations of the Weyl group for($Un which, for example,
[P1,¥,,1(123 =(123 Py vl)=V (213,
[P3¥,1(123 =W, (32D, (26)
[P132¥ 1 1(123 =[P,P13¥ ,,1(123 =¥, (312).
It follows that
[P1¥,11(123 =[ ¢, (2)8[4,,(1)® ¢, (3] ]5
e e e LSy

| V1/2 V3/2

I/
"N2
w2 N2 ][¢V2(1)®[¢V1(2)®¢V3(3)]l v 27)

where{3%¢} is a Wigner 6§ symbol. Thus, we obtain the matrix elements

12 wval2 I’
(WU PIVY= 8, 180s 10 80r 0~ D22 2N R 2 5 D) o :
Vl,V2 V2,Vl V3,V3 V2/2 )\/2 I
(28)
In a similar way one determines that
12 v,/2 17
VP ) =8, 18 1By (D 2R R D D)
V1aV3 VoV T3V 1}3/2 )\/2 I
(29
and
DV IPd ) =6, 50 1 o~ D2 R BT e Y
YV TV, V3T Vg, Yy V2/2 )\/2 |
(30
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FIG. 2. The action of Weyl group elements on the highest weight of afB)Stsep.

To check these results, it is useful to apply them to the highest weight state. We find that

I:)12

At
(vt g0 §> =(~ 1| (w A+ .0 T">

m A
P124()\+M,M,O)E>:‘(O,)\'i‘,u,,/.l,) §>1 (31)

N+ u
(Mioa)\_{—[u') T>l

P134(>\+M,M.0) §> =(- 1

consistent with the known action on the highest weight shown in Fig. 2. As expected, Weyl group
elements map extremal states into other extremal states.

V. WIGNER FUNCTIONS

Matrix elements of SU(2) group elements are given immediately in tfel)} basis as
SU(2) Wigner functions; viz.,

ry’ I
<V l |R23(a,ﬁ, y)| V|>: 6V£ ’V15|,ID(Vé_Vé)/z,(Vz—Vg)/z(a’B’ 7)1 (32)
whereD'M,N is a standard S(2) Wigner function.
To evaluate matrix elements of the other SU(Z)ubgroups, we make use of the facoted
by Chacm and Moshinsky) that the different SU(2) subgroups are Weyl transforms of one
another. Thus, for example, the infinitesimal generators of SIY(2)

Ci2. Cu, 3Cy—Cy), (33

are related to those of SU(g)by

C12= P13 2sP135= P13LosP 125 (34)
It follows that
RiA @, B,7)=PizRos(a,B,¥)P123. (35
Similarly, one finds that
Ris(a,B,7)=P1Ros(a,B,y)Py2. (36)
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Thus, with the parametrization given by E), we obtain the S(8) Wigner functions

N
Ds,rﬁ),v|(a1’,31:71'61’2’,32-%’,(33-73)
1’ ’ ’ ’
:2 D(Vé*vé)/Z,(Tzfog)/Z(a[l’Bl"yj')<(vl 17-210-3)| |Pl3ﬂ(0'3,1/1,7'2)\.]>

J
XD(,,i_TZ)/Z(,,l_Uz),Z(azaﬁz:a2)<(03’1’1a02)3| P12d(v1,02,03)1)

|
XDy ag)12,(vy—vg2(¥3:83:73), (37)

where the sum is over all, 7, andJ values allowed by Eqq11), (13), and the betweenness
conditions(8).

VI. MATRIX ELEMENTS OF SO (3)

If SO(3)CSU(3) is the subgroup whose infinitesimal generators are the angular momentum
operators

L,=—i(Cy3—Cs), Ly,=—i(Cy—Cia), I:y:_i(612_621)1 (39

then we have the identities

L,=21,, L.=-2F, L,=2T, (39)

wherel,, T, andF, belong to the Lie algebras of SU() SU(2)3, and SU(2),, respectively.
Thus, with the standard parametrization of an(3@lement

Q(a,B,y)=e iete1Alyg=inx (40)
we have the identity

Q(a,B,v)=Rz30,20,0)R;15(0,28,0)R,3(0,2y,0) = Ry5(0,201,0) P13,R55(0,28,0) P1,3R23(0,2y,0),

(41
and the matrix elements
ry! — I’
<V I |Q(arﬂ|7)|1jl>_;] d(Vé—Vé)/Z,(T3—U3)/2(2a)
’ ' ' J

X<(Vl'T3!U-3)I |P132|(0-31Vl’T3)J>d(vi_73)/2’(,,1_02)/2(2:8)

X((Us-V1'02)3|P123J(V1102103)|>d|('02703)/2,(yz—y3)/2(27’)'
(42

whered,,, is a reduced S(2) Wigner function.

VII. DISCUSSION

We have derived matrix elements of Weyl group elements and expressions (@)r\Signer
functions by making use of the dual actions af3Jand U2) on the carrier spaces of symmetric
representations of (8).

The groups W) and U2) are special cases of ™) and U{) groups that form dual pairs on
the carrier spaces of fully symmetric irrefise., irreps of highest weigHic,0,..)] of U(NXn);
they are also dual on a direct sum of such spaces.

The essential property of a dual pAit is that the constituent groups are the centralizers of
each other’s actions on a specified vector space. The classic example is the Schur—\Afegt pair
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unitary, U(n), and symmetricSy, groups which have commuting actions on fkidold tensor
product,CN*", of a complexn-dimensional vector spac€’. The Schur—Weyl duality has been
used effectively to relate the characters of unitary groups, which are infinite Lie groups, to those
of the finite symmetric groups. It also underlies the famous Littlewood—Richardsort°rédes
tensor products and the methods of King, Wybourne, and dfhensinferring branching rules.

Another famous dual pair comprises the orthogonaNYQ(@and symplectic, Sp(,R), groups
acting on theN-fold tensor productiN*" of the n-dimensional harmonic oscillator Hilbert space
H".1” Whereas the Schur—Weyl duality relates the properties of a finite-dimensional irrep of a Lie
group to those of a discrete group, the symplectic-orthogonal duality relates the properties of an
infinite-dimensional irrep of a noncompact Lie group to those of a compact Lie group. This duality
was ui'ssed, for example, to infer the 8pR) —U(n) branching rules from known properties of
O(N).

It is interesting to note that W) X U(N) and Spf) X O(N) are both direct products of dual
pairs on a common harmonic oscillator Hilbert spat&". Thus, one has the useful concept of
dual subgroup chains

Sp(n,R)DU(n)« O(N)DU(N), (43)

involving the two dual pairs Sp(R) X O(N) and U() X U(N). These duality relations have been
used® to relate the representations and tensor products &f)UG an O(N) basis to those of
Sp(n,R) in a U(n) basis. They also play an essential role in the microscopic theory of nuclear
collective motioR® with HN*" regarded as the Hilbert space fsparticles in am-dimensional
space.

It should be mentioned that dual subgroup chains were discovered long ago by’Breuer
extended the Schur—Weyl duality by observing that the centralizer of the orthogonal subgroup
O(n)CU(n) on CN*" is a group(also an algebpathat contains the symmetric groy, as a
subgroup[cf. Ref. 13 for a discussion of the @(—Brauer duality.

The physical significance of several of the above dual pairs is illustrated effectively by appli-
cations to optics and quantum interferometry, applications which motivated the present investiga-
tion.

It has long been known that geometrical optics is an application of Hamiltonian mechanics.
Moreover, in the linear approximation, the transformation of a light beam by an optical element,
such as a lens, is an &R) transformation. This observation is important because it means that
the combined effects of many optical elements can be inferred by matrix multiplication. More
importantly, one can go beyond the linear approximation to compute the aberrations of an optical
system and how to correct them. The techniques for doing this have been developed into a fine art
by Dragt and his studerffsand have revolutionized the design of charged-particle and optical
beam systems; an introduction to the subject has been given by Guillemin and Stéfnberg.

We note that there also exists a dual group action on optical systems. If a beam of light or
charged particles is polarizable or has intrinsic spin degrees of freedom, then, in addition to the
symplectic group action on its spatial phase-space coordinates, there is a dual orthogonal group
action on its polarization state. Thus, for example, for light, with two linearly independent polar-
izations, or for spin-half particle beams, one has a dual 8)¢0(2) action on the combined
space-spin degrees of freeddiNote that we mean by $p,R) the rank-2 group of real canonical
transformation of a four-dimensional phase space; some authors denote the same group by
Sp(4,R).] Thus, one can extend the dynamical group for an optical system frag\R3gdo the
direct product group Sp(R) < O(2) and thereby admit polarizin(spin rotation as well as
focusing elements. One can further extend the dynamical group toFgp{&p(2R) X O(2) to
include combinations of the twélt is of interest to note that a general polarizing element is not
restricted to @2) and may induce a (2) transformation that lies inside 8hR) but which does
not commute with the group &pR) of spatial transformationk.

Such extensions are relevant for describing the quantum interference of light or particle
beams. In this case, one is interested in the detailed quantum states of many-{rhatgn
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particle system. Thus, one is interested in the unitary representations of the dynamical group and,
as we have shown explicitly for (3)XU(2) in Sec. IlIC, the irreps of a dynamical group are
determined by those of its dual and vice versa.

It has recently been proposed that quantum interferometers should be analyzed in terms of
unitary groups:® A typical quantum interferometer comprises a sequence of elements in which
two input modes of the electromagnetic figlbeam$ are transformed linearly into two output
modes. It has been shown that the transformation of the two modes by such an optical element is
a U(2) transformationan SU2) transformation together with a phase shifit has also been
showrf that a so-calledctiveinterferometer can similarly be represented by ar{iS1) transfor-
mation[note that SW1,1) is isomorphic to S(R)] and that a linear optical system, comprisimg
input modes, is represented by an &)¢ransformatior?.

The use of dual pairs provides a natural framework for the extension of these methods to
include polarization and optical elements whose parameters depend on the polarization state of the
input fields. To include polarization, one simply extends th@)Jgroup to U)X U(2) and to
include combinations of polarizers and beam splitters, for example, one extends to
U(2n) D U(n) X U(2). This is particularly relevant in the quantal context because the input states
available too photons, when there areinput modes and two linearly independent polarizations
for each photon, span an irrep of highest weighD,..) of the group U(21). The duality prop-
erties imply that the subrepresentations available to the subgronpXl{(2), onrestriction of
the U(2n) representation(o,0,..), are the so-called two-rowed irreps of typa&;(\,,0,...)

X (N1,\>p) (i.e., irreps whose highest weights have no more than two nonzero comporidriss
follows simply because a @) weight has only two components and the two subgroups) @6d

U(2), being each other’s duals, have highest weight states in common. This results in an enormous
simplification in the analysis of a multi-mode interferomef®lote that, as usual, the St labels

are obtained by taking differences of ij(labels, so that the W\ irrep (\1,A5,0,...) restricts to

the SUq) irrep (\y—X\5,15,0,...) ]

An important application of S(3) interferometry is the experimental test of Bell's theorem
without inequalities, known as the GHZ té8tStandard tests of Bell's theorem, designed to test
the hypotheses of local realism against quantum theory, involve spacelike-separated measurements
of two polarization-correlated fields, and local realism establishes an upper bound on the possible
degree of correlations between the two fields. The GHZ test, in its ideal form, yields one experi-
mental result for local realism and an entirely different result for quantum theory. Thus, a par-
ticular observation determines which theory is correct, and an inequality is not necessary. In the
context of SW3) Wigner functions, the important aspect of the GHZ test is that three polarization-
correlated fields are used, and therefof8)M U(2), accounting for three fields and two polariza-
tions, is appropriate here.

Consider, for example, the Sbl transformations of a one-rowed irre@,0,..), by a system
which ignores the polarization. For such an irrep, the highest weight state can be identified with
the state

|¢(7,0,..))=(ajp|0). (44)

of maximum polarization. Hence, all states of the 8Jirrep with this highest weight state have
maximum polarization. Thus, the $2) coupling becomes trivial and basis states for the irrep are
labelled simply and uniquely by their weights. It follows that the basis states of the generalized
version of the theorem of Sec. Il C are simply the states

(al)™ (alp™2  (af)™

|v)= N \/V_2| o

The elements of the Weyl group are seen to act on such states by simply permuting the compo-
nents{v;} of the weights.

|0). (45)
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For the general two-rowed irreps one must include explici{Z\d¢oupling, as shown for
SU(3) in Sec. IlIC. For example, basis states for a two-rowed irrep @) dre highest weight
states of the dual algebra(2) and have the general form

[13v1)@[]3va)®[|5va)y @ |5va)] T 1. (46)

Thus, computing matrix elements of Weyl group elements for any two-rowed)Sidep never
involves more than S(2) recoupling.
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APPENDIX: FACTORIZATION OF AN SU (3) ELEMENT

Claim: Any elementg e SU(3) can be parametrized and expressed as a product

gd(a1,B1,v1,@2,B2,23,B83,v3) =Rog(@1,B81, y1)Rid az,B2,a2)Rag(az, B3, v3),  (Al)

where Ryg(a, 8,7) € SU(2)3, Rixa,B,a) e SU(2),,, and the{SU(2);} are the subgroups of
SU(3) defined by the subsystems of roots shown in Fig. 1.
Proof: First observe that any SB) matrix can be brought to the form

* ok %
EE I (AZ)
0 * =
by an SU(2}5 transformation; viz.
1 0 0 X * x X * %

0 Y* z¢||y = v1-|x]? * = [, (A3)

0 -Z Y/ \z

*
*

*
*
o
*
*

1 1
whereY=y(1—|x|?) 2, andZ=z(1—|x|?)~ 2 and we have used the fact tHai?+ |y|?+]|z|?
=1. A subsequent SU(2) transformation then brings the matrix to SUg2jorm; i.e.,
X* Vi—[x? o X * ok 100
e St LU I S INE R P I e B P (Ad)

0 0 1 0 *  * * ok

o

Thus, we determine that

x* Vi—|x]] 0\ /1 0 0\ [/x * = 100
—V1—1x|?] X oo Y* Z*|[y » x|=|0 = x|, (A5

0 0 1/ \0 -2 Y zZ * * 0 * «*

Inversion of this equation gives

X * % 10 0 X —Jy1-|x]> 0\ /1 0 O
y * x|=[0 Y =Z* || J1-|x? x* 0]{0 * =], (A6
Z * * 0O Z Y* 0 0 1 0 * =*

Downloaded 03 Jan 2002 to 216.211.76.251. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 40, No. 7, July 1999 Representations of the Weyl group Wigner . . . 3615

which proves the claim with suitably chosen parameter values; e.g.,
x=e '"2c0q B,/2), 1—|x|?=sin(B,/2). (A7)
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