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Abstract. We use the concept of grading of Lie algebras to investigate the appearance of
central charges during the contraction process. As for the usual graded contractions, one finds
simultaneously the central extensions of classes of algebras, rather than specific Lie algebras. To
illustrate the method, we consider in detail two physical applications: the kinematical algebras of
spacetime and the u(n)-bosons limits of some Lie algebras.

1. Introduction

The objective of this paper is to generalize the method of graded contractions [1, 2] to include,
using again the concept of Lie gradings [3], contractions with central charges. Although we will
be primarily interested in contracting semisimple Lie algebras, our method can, in principle, be
applied to non-semisimple Lie algebras, as well as Lie superalgebras and infinite-dimensional
Lie algebras (just like the usual graded contractions [1]).

Contractions are important in physics as they explain formally why some theories arise
as a limit regime of more ‘complete’ theories (see [4] and references therein). The paradigm
is the passage from the Poincaré algebra to the Galilei algebra, in the limit where the speed of
light approaches infinity [5]. Similarly, the de Sitter algebra can be contracted to the Poincaré
algebra in the limit where the radius of the universe is large. Other examples include the so(3)
algebra of rotations, which contracts to translations for small angular displacements, and the
dynamical algebra sp(2n,R) of harmonic oscillators in n dimensions, which contracts to the
u(n)⊕hw( 1

2n(n+ 1)) algebra (where hw(m) is the mth Heisenberg–Weyl algebra) describing
collective excitations at low energy: the n = 3 case is discussed in [6], whereas a realization
applicable to specific problems in atomic physics was obtained in [7] for n = 1 and 2. From
these examples, one can see that the existence of an ‘approximate’ or ‘effective’ theory can
often be related to a contraction.

The importance of central charges in physics is likewise well appreciated [8–12]. Their
appearance in a Lie algebra can be the counterpart of the presence of non-trivial phases in a
projective representation of the corresponding group. We note, for instance, that the so-called
‘Schwinger term’ (associated with anomalies) of conformal field theories can be associated
with the central charge of the current algebra of the underlying theory [13, 14]. This term is
crucial, for example, in the construction of Wess–Zumino–Witten models [15].
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Mathematically, the general problem of finding the central charges ‘sits’ halfway between
the contraction procedure, where commutators that were originally non-vanishing are set
to zero, and the opposite procedure of deformation, where initially vanishing commutators
become non-zero. No method of ‘graded deformations’ has been developed so far, and our
scope is actually more modest.

Our first motivation is to understand in terms of gradings the central charges in kinematical
algebras. It was found in [16] that all physically possible kinematics, described by Bacry and
Lévy-Leblond using very general assumptions, are Z2 × Z2 graded contractions of either
de Sitter algebras [17]. However, only some of the contractions can be extended in a non-
trivial manner by a central element. We will show how one can anticipate this using grading
arguments.

Perhaps the most pleasant result of our method occurs for the (2 + 1)-dimensional Galilei
algebra. When considered on its own, this algebra admits three different central charges,
one of which must eventually be eliminated by considering the transformations at the group
level. Within our formalism, which considers the Galilei algebra as a contraction of the de Sitter
algebra, we find that this same charge cannot possibly occur at the algebra level. This illustrates
that our results will, in general, differ from those obtained had we considered the problem of
finding central charges in vacuo, i.e. without reference to another, uncontracted algebra.

For a given fixed grading, not all contractions of a given algebra can be obtained as
contractions preserving that chosen grading. In a similar way, we do not expect (and we
must emphasize this) that our method will give all the central charges while simultaneously
preserving the graded structure of the algebra. In fact, it is precisely the focus of this paper
to determine how the graded structure constrains charges in an uncontracted algebra, such as
de Sitter or Poincaré, to become (or remain) non-trivial in the contracted algebra, such as the
Galilei algebra.

The second motivation is to understand in terms of gradings the contractions called in [6]
u(n)-bosons limits, which include the families of contractions su(n + 1) → u(n) ⊕ hw(n),
sp(2n) → u(n) ⊕ hw( 1

2n(n + 1)), so(2n) → u(n) ⊕ hw( 1
2n(n − 1) and so(2n + 1) →

u(n) ⊕ hw(n) ⊕ hw( 1
2n(n − 1)). An example, which has applications in nuclear collective

motion [6], is the sp(6,R) → u(3) ⊕ hw(6) contraction. These contractions preserve a
grading which is a Z3 grading for the An,Bn and Cn series, and a Z2 ⊗ Z3 grading for the
Dn series. As is tradition with graded contractions, our equations do not depend on the
particular algebra but only on the graded structure, so that we need only consider in detail
the su(n) → u(n − 1) ⊕ hw(n − 1) and so(2n + 1) → u(n) ⊕ hw(n) ⊕ hw( 1

2n(n − 1))
contractions. The analysis for the u(n)-boson limits of so(2n) and sp(2n) does not differ from
the su(n) case, nor does the analysis of the contractions of the real forms of these algebras.

Let us finally mention that the search for central charges within the framework of graded
contractions has already been performed for some specific Lie algebras, and specific finest
gradings by [18]. These authors have used a fixed finest grading in order to find all the graded
contractions and then all their central extensions. They have then classified the extensions
according to whether they can be obtained through a contraction or not. Our approach is
different: we contract and look for central charges simultaneously by emphasizing the graded
structure common to a family of algebras. We only obtain a subset of the solutions found in
[18] because our gradings are, in general, coarser than theirs. The graded contraction equations
that we find provide a preliminary sieve, as coarse or as fine as the grading itself, in the search
for central extensions. This sieving process provides an interpretation, as coarse or as fine as
the grading, as to why some charges do or do not appear during a contraction.
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2. Graded contractions with central extensions

A grading of the Lie algebra L is a decomposition into subspaces labelled by µ:

L =
⊕
µ∈�

Lµ (1)

where µ takes on values in some index set �, such that [3]

[Lµ,Lν] ⊆ Lµ+ν (2)

which means that if x ∈ Lµ and y ∈ Lν , then [x, y] belongs to the subspace Lµ+ν . The
commutator of two elements l(µ,i) ∈ Lµ (where µ is a grading index and i is a generator index)
and l(ν,j) ∈ Lν is denoted by

[l(µ,i), l(ν,j)] =
∑
k

c
(µ+ν,k)
(µ,i),(ν,j)l(µ+ν,k) (3)

where c(µ+ν,k)
(µ,i),(ν,j) are the structure constants of L.

We now extend L to L by adding the unit operator 1l, so that the commutation relations
for L read [

l(µ,i), 1l
] = 0

[
l(µ,i), l(ν,j)

] =
∑
k

c
(µ+ν,k)
(µ,i),(ν,j)l(µ+ν,k) + β(µ,i),(ν,j)1l.

(4)

The central charges (or central parameters) β(µ,i),(ν,j) play the role of structure constants for
the unit operator. The Jacobi identities force the structure constants to satisfy the quadratic
conditions∑
l

(
c
(µ+ν,l)
(µ,i),(ν,j)c

(µ+ν+σ,q)
(µ+ν,l),(σ,k) + c

(ν+σ,l)
(ν,j),(σ,k)c

(µ+ν+σ,q)
(ν+σ,l),(µ,i) + c

(σ+µ,l)
(σ,k),(µ,i)c

(µ+ν+σ,q)
(σ+µ,l),(ν,j)

)
= 0 (5)

and they constrain the β’s to satisfy∑
l

(
c
(µ+ν,l)
(µ,i),(ν,j)β(µ+ν,l),(σ,k) + c

(ν+σ,l)
(ν,j),(σ,k)β(ν+σ,l),(µ,i) + c

(σ+µ,l)
(σ,k),(µ,i)β(σ+µ,l),(ν,j)

)
= 0. (6)

Now recall that the solutions to equations (6) are not unique. If one shifts the infinitesimal
generators to

l̃(µ,i) ≡ l(µ,i) + α(µ,i)1l (7)

and then compares the commutator (4) with its ‘shifted’ version

[l̃(µ,i), l̃(ν,j)] =
∑
k

c̃
(µ+ν,k)
(µ,i),(ν,j)l̃(µ+ν,k) + β̃(µ,i),(ν,j)1l (8)

one can see that c̃(µ+ν,k)
(µ,i),(ν,j) = c

(µ+ν,k)
(µ,i),(ν,j). Furthermore, if the set {β(µ,i),(ν,j)} is a solution of (6),

then so is the set {β̃(µ,i),(ν,j)} defined by

β̃(µ,i),(ν,j) = β(µ,i),(ν,j) −
∑
k

α(µ+ν,k) c
(µ+ν,k)
(µ,i),(ν,j) (9)

for any values of the ‘shift parameters’ α(µ,j). Two sets of central parameters {β(µ,i),(ν,j)}
and {β̃(µ,i),(ν,j)} which can be related through (9) are called equivalent and, in particular, a
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parameter β(µ,i),(ν,j) corresponds to a trivial charge if it is equivalent to zero, i.e. if there exist
shift parameters which make the corresponding β̃(µ,i),(ν,j) in (9) zero.

The β’s in equations (4) may or may not be trivial in L. Since we are seeking to find
which charges in L become non-trivial during the graded contraction, we must, initially at
least, explicitly keep even such trivial charges in L.

A graded contraction with central extension of the L to the Lie algebra Lε,η involves two
types of parameters. The parameters εµ,ν control the contraction by scaling commutators in
L. The parameters ηµ,ν , which again depend only on grading indices, scale all the β’s in a
family of commutators, thereby controlling the possible appearance of central charges. Put all
altogether, the initial Lie algebra L is extended to L, whose commutators are deformed into
those of the algebra Lε,η.

The commutators in L are redefined into those of Lε,η as follows:

[l(µ,i), l(ν,j)] → [l(µ,i), l(ν,j)]ε,η = εµ,ν[l(µ,i), l(ν,j)] + ηµ,νβ(µ,i),(ν,j)1l

= εµ,ν

(∑
k

c
(µ+ν,k)
(µ,i),(ν,j)l(µ+ν,k)

)
+ ηµ,νβ(µ,i),(ν,j)1l. (10)

The commutators in Lε,η will henceforth be written with the subscripts [· , ·]ε,η in order to
clearly distinguish them from the commutators in L, which have no subscripts. Note that the
parameters εµ,ν and ηµ,ν are symmetric under permutation of µ and ν. In order for Lε,η to be
a Lie algebra, the parameters are subject to constraints derived from the Jacobi identity:

0 = [[l(µ,i), l(ν,j)]ε,η, l(σ,k)]ε,η + cyclic permutations

= [εµ,ν[l(µ,i), l(ν,j)] + ηµ,νβ(µ,i),(ν,j)1l, l(σ,k)]ε,η + cyclic permutations

= εµ,ν[[l(µ,i), l(ν,j)], l(σ,k)]ε,η + cyclic permutations

= εµ,ν

(
εµ+ν,σ [[l(µ,i), l(ν,j)], l(σ,k)] + ηµ+ν,σ

(∑
l

c
(µ+ν,l)
(µ,i),(ν,j)β(µ+ν,l),(σ,k)

)
1l

)

+cyclic permutations. (11)

Taking into account the fact that the commutators [·, ·] of the original algebra L already
satisfy the Jacobi identities (5), one finds the usual equations determining graded contractions
[1]:

εµ,νεµ+ν,σ = εν,σ εν+σ,µ. (12)

From equation (11) and (6), we also find

εµ,νηµ+ν,σ = εν,σ ην+σ,µ (13)

as a set of solutions of (11). Equations (12) and (13), together with (10), are the central result
of this paper.

Before solving (13), one should note that they must be slightly modified in three special
cases:

(a) a subspace Lµ is empty;

(b) [Lµ,Lν] = 0 (so that c(µ+ν,k)
(µ,i),(ν,j) = 0, for all i, j ); and

(c) the charges β(µ,i),(ν,j) are forced to be 0 for all i, j .
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Under such circumstances, the relevant term in equation (11) is zero and does not contribute
to the sum: any product containing εµ,ν or ηµ,ν must be taken out of the relations (12) and
(13). The parameters εµ,ν or ηµ,ν are then referred to as irrelevant. In [1], a grading containing
an irrelevant parameter is referred to as being non-generic. A generic grading is such that no
commutator in (2) vanishes identically.

In [1], it was shown that the non-zero ε’s can often be renormalized to 1 for complex Lie
algebras, and to 1 or −1 for real Lie algebras. This fact provides us with the possibility of
relating different real forms through a graded contraction, and this notion has proven useful
in the context of kinematical groups [16]. Thus, the rescaling of the structure constants of L
through Lµ → Gµ = aµLµ leads to a rescaling of the ε’s and η’s as

ε′
µ,ν ≡ aµaν

aµ+ν
εµ,ν and η′

µ,ν ≡ aµaνηµ,ν. (14)

Finally, once we have found those ηµ,ν’s that are not necessarily zero, one must remove the
trivial parameters through a transformation (7). As for the contractions of Lie algebras, a
non-generic grading will, in general, allow more non-trivial solutions for the η’s, since (13)
then contains fewer equations.

To summarize, the algorithm is as follows:

1. Choose a grading of some Lie algebra L.
2. Extend L to L but keep the same grading. (The unit, which commutes with everything, is

added to the L0 subspace).
3. Remove the appropriate terms in (12) when the grading is non-generic, and then solving

the equations for the ε’s.
4. Given a set of solution ε’s, solve for the η’s using the linear equations (13), after removing

therein the terms containing irrelevant η’s. This contracts L to Lε,η.
5. Substitute in (10) the solutions η. The trivial charges are then eliminated using, in

equation (9), the deformed structure constants εµ,ν c
(µ+ν,k)
(µ,i),(ν,j) and central parameters

ηµ,ν β(µ,i),(ν,j) of the contracted algebra Lε,η. Non-trivial charges necessarily appear when
ηµ,ν �= 0.

Step 2 is easy when L is a semisimple Lie algebra because then all the charges must be
trivial. In other words, the central charge β(µ,i),(ν,j) can be written, using (7) and (9) with
β̃ = 0, as

β(µ,i),(ν,j) =
∑
l

c
(µ+ν,l)
(µ,i),(ν,j) α(µ+ν,l) (15)

where α(µ+ν,l) are numbers chosen so that β(µ,i),(ν,j) is real.
In the literature (see, for instance, [20]), one often finds equation (15) written in the form

β(µ,i),(ν,j) = "([l(µ,i), l(ν,j)]) (16)

where " is a linear functional defined so that "(l(µ,i)) = α(µ,i). Please observe that this last
equation involves a commutator in the original algebra L. Using this, equation (10) takes the
more ‘symmetric’ form

[l(µ,i), l(ν,j)]ε,η = εµ,ν[l(µ,i), l(ν,j)] + ηµ,ν "([l(µ,i), l(ν,j)])1l.

Although ηµ,ν = εµ,ν is a solution to equation (6), it is not the only solution: we have a non-
trivial central extension when the scalings εµ,ν and ηµ,ν are not the same so that the central
parameter does not ‘follow’ the commutator.
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We deduce from equation (15) that β(µ,i),(ν,j) = 0 if [l(µ,i), l(ν,j)] = 0 and that, if two
subspaces commute, i.e. if [Lµ,Lν] = 0, then the corresponding ηµ,ν and εµ,ν are irrelevant.
Moreover, equation (15) also provides relations between charges. For instance, consider the
following Z3 grading of su(3):

L = L0 + L+ + L− (17)

where

L0 = {E12, E21, E11 − E22, 2E33 − E22 − E11}
L+ = {E23, E13}
L− = {E32, E31}.

(18)

The commutation relations are given in equation (44). The commutator [E13, E21], for instance,
gives, in the notation of equation (4),

[E13, E21] = −E23 → [l(1,13), l(0,21)] = −l(1,23) + β(1,13),(0,21) 1l. (19)

From this, β(1,13),(0,21) = −α(1,23). Let E11 − E22 = h1. We also have

[h1, E23] = −E23 → [l(0,h1), l(1,23)] = −l(1,23) + β(0,h1),(1,23) 1l (20)

and hence the relation

β(0,h1),(1,23) = −α(1,23) = β(1,13),(0,21) (21)

between these central parameters.
This can be generalized. We know, from the root diagram of a semisimple Lie algebra, that

all the weight subspaces, with the exception of the zero-weight subspace, are of dimension
�1. Thus, if [l(µ,i), l(ν,j)] �= 0 and does not lie in the zero-weight subspace, the sum in
(15) contains exactly one term. Quite generally then, if two commutators are proportional
to the same element not in the zero-weight subspace, e.g. if [l(µ,i), l(ν,j)] = c

(µ+ν,k)
(µ,i),(ν,j)l(µ+ν,k)

and [l(µ′,i ′), l(ν ′,j ′)] = c
(µ′+ν ′,k)
(µ′,i),(ν ′,j)l(µ′+ν ′,k) with µ + ν = µ′ + ν ′, then their respective charges

β(µ,i),(ν,j) and β(µ′,i ′),(ν ′,j ′) are proportional to one another, as in equation (21). As all the
applications discussed in this paper have as a starting point a semisimple Lie algebra, such
relations will be extremely useful.

Before turning our attention to physical applications, we conclude this section with the
simplest example of a solution, a Z2 grading, for which a general Lie algebra L decomposes
into

L = L0 + L1 (22)

with commutation relations expressed symbolically as

[L0,L0] = L0 [L0,L1] = L1 [L1,L1] = L0. (23)

Then, equations (12) give the following possible solutions [1]:

εI =
(

1 1
1

)
εII =

(
0 0

0

)
εIII =

(
1 1

0

)

εIV =
(

0 0
1

)
εV =

(
1 0

0

) (24)
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where we have taken advantage of the symmetry εµ,ν = εν,µ to write ε in the form

ε =
(

ε0,0 ε0,1

ε1,1

)
.

Equation (13) then reduces to

ε0,0η0,1 = ε0,1η0,1

ε0,1η1,1 = ε1,1η0,0

(25)

and, solving for the η’s, we obtain

ηI =
(

a b

a

)
ηII =

(
a b

c

)
ηIII =

(
a b

0

)

ηIV =
(

0 a

b

)
ηV =

(
a 0

b

) (26)

where a, b and c are free parameters. As it may be possible to eliminate some β’s through a
transformation of the type found in equation (9), two different sets of η’s, a priori inequivalent,
could yield identically extended algebras once such shift transformations have been performed.

3. Z2 ⊗ Z2 gradings and kinematical algebras

In this section, we determine the Z2 ⊗ Z2 centrally extended contractions of the de Sitter
algebras (in (2 + 1) and (3 + 1) dimensions) that lead to the kinematical algebras.

3.1. Generic Z2 ⊗ Z2 graded contractions

A Z2 ⊗ Z2 grading is a decomposition

L = L00 + L01 + L10 + L11. (27)

In the applications that we have in mind, the first Z2 index gives the transformation properties
of the generators under space inversion, whereas the second Z2 refers to the time reversal.

Equation (12) is given in [1] for the generic Z2 ⊗ Z2 grading, whereas (13) takes the form

ε00,00η00,k = ε00,kη00,k

ε00,kηk,k = εk,kη00,00

ε00,01η01,10 = ε01,10η00,11 = ε00,10η01,10

ε00,10η10,11 = ε10,11η00,01 = ε00,11η10,11

ε00,11η01,11 = ε01,11η00,10 = ε00,01η01,11

ε01,10η11,11 = ε10,11η01,01 = ε01,11η10,10

ε01,01η00,10 = ε01,10η01,11

ε01,01η00,11 = ε01,11η01,10

ε10,10η00,01 = ε01,10η10,11

ε10,10η00,11 = ε10,11η01,10

ε11,11η00,01 = ε01,11η10,11

ε11,11η00,10 = ε10,11η01,11

(28)
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where k = (01), (10), (11). This set of equations is maximal, in the sense that whenever one
considers a non-generic grading, then one just has to remove the corresponding terms from the
equations above. Taking into account the symmetry of ε and η, we shall write the solutions in
the form

ε =




ε00,00 ε00,01 ε00,10 ε00,11

ε01,01 ε01,10 ε01,11

ε10,10 ε10,11

ε11,11


 η =




η00,00 η00,01 η00,10 η00,11

η01,01 η01,10 η01,11

η10,10 η10,11

η11,11


. (29)

3.2. Galilei algebra in (2 + 1) dimensions

In (2 + 1) dimensions, the de Sitter algebra so(3, 1) is six dimensional, with commutation
relations

[J, P1] = P2 [J, P2] = −P1

[J,K1] = K2 [J,K2] = −K1

[H,Pi] = −Ki [H,Ki] = −Pi

[P1, P2] = J [K1,K2] = −J

[Pi,Kj ] = −δijH

(30)

where J is the angular momentum, H the energy, and Pi and Ki are the generators of
translations and inertial transformations, respectively. Our Z2 ⊗ Z2 grading (27) decomposes
so(3, 1) into the subspaces

L00 = {J } L01 = {H } L10 = {P1, P2} L11 = {K1,K2}. (31)

Then, using equation (10), one obtains so(3, 1)ε,η, with the deformed commutation relations

[J, P1]ε,η = ε00,10P2 + η00,10αP2 1l [J, P2]ε,η = −ε00,10P1 − η00,10αP1 1l

[J,K1]ε,η = ε00,11K2 + η00,11αK2 1l [J,K2]ε,η = −ε00,11K1 − η00,11αK1 1l

[H,Pi]ε,η = −ε01,10Ki − η01,10αKi
1l [H,Ki]ε,η = −ε01,11Pi − η01,11αPi

1l

[P1, P2]ε,η = ε10,10J + η10,10αJ1l [K1,K2]ε,η = −ε11,11J − η11,11αJ1l

[Pi,Kj ]
ε,η

= −ε10,11δi,jH − η10,11δi,jαH1l

(32)

where we have used the notational shortcuts αP2 = α(10,2) and so forth, to denote the shift
parameters.

The parameters ε00,00, ε00,01, ε01,01 and their corresponding η’s are irrelevant, and the
appropriate terms must be removed from (28). The possible kinematical algebras found in
[17] all have ε00,10 and ε00,11 equal to 1. Hence, equations (28) simplify to

η01,10 = ε01,10η00,11

η01,11 = ε01,11η00,10

ε01,10η11,11 = ε01,11η10,10

ε10,10η00,11 = ε10,11η01,10

ε11,11η00,10 = ε10,11η01,11.

(33)

There is no restriction on the parameter η10,11, which occurs in commutators of the type
[Pi,Kj ].
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The Galilei algebra is obtained from the de Sitter algebra by using the matrix

εGal =




∅ ∅ 1 1
∅ 0 1

0 0
0


.

This, in turns, leads to the matrix

ηGal =




∅ ∅ a b

∅ 0 a

0 m

k


.

(As in [1], ∅ denotes an entry associated with an irrelevant parameter.) The labelling of lines
and column in each matrix is (00), (01), (10), (11). In terms of explicit commutation relations,
the use of εGal and ηGal transforms (32) into

[J, P1]ε,η = P2 + aαP2 1l [J, P2]ε,η = −P1 − aαP1 1l

[J,K1]ε,η = K2 + bαK2 1l [J,K2]ε,η = −K1 − bαK1 1l

[H,Pi]ε,η = 0 [H,Ki]ε,η = −Pi − aαPi
1l

[P1, P2]ε,η = 0 [K1,K2]ε,η = −k αJ1l

[Pi,Kj ]ε,η = −mδijαH1l.

(34)

The charges aαPi
and bαKi

are clearly equivalent to trivial charges as they can be eliminated
by shifting the translation Pi and Ki generators using (7). This leaves the non-trivial charges
of the extended Galilei algebra as k αJ and mαHδij . Thus, we finally have

[J, P1]ε,η = P2 [J, P2]ε,η = −P1

[J,K1]ε,η = K2 [J,K2]ε,η = −K1

[H,Pi]ε,η = 0 [H,Ki]ε,η = −Pi

[P1, P2]ε,η = 0 [K1,K2]ε,η = −k αJ1l

[Pi,Kj ]ε,η = −mδijαH1l.

(35)

This result is in accordance with the extended commutation relations found on p 240 of
[20] (note that equation (3.29f ) of this reference should read [Ki,H ] = Pi), except in the
following respect. In [20], the commutator [J,H ] in the Galilei algebra can be extended to
[J,H ] = h1l. However, it is shown that h must be zero if a finite rotation by 2π + θ is to
coincide with a rotation by θ . When the Galilei algebra is considered as a contraction of the
de Sitter algebra, however, the central parameter η00,11 β(J,H) vanishes immediately because
β(J,H), the central parameter for the commutator [J,H ] in the de Sitter algebra, is found to be
necessarily zero from equation (15).

3.3. Kinematical algebras in (3 + 1) dimensions

The Z2 ⊗ Z2 grading of the de Sitter algebras so(4, 1) and so(3, 2) is

L00 = {J} : three angular momentum operators

L01 = {H } : one energy operator

L10 = {P } : three translation operators

L11 = {K} : three inertial transformations.

(36)
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Hereafter, we are interested in the graded contractions of the de Sitter algebras, with
commutation relations given generically by

[J,J] = J

[J,P ] = P [J,K] = K

[H,P ] = ±K [H,K] = P

[P ,P ] = ±J [Pi,Kj ] = δijH

[K,K] = −J

(37)

where the upper sign applies to so(4, 1) and the lower sign to so(3, 2). Following the notation
of [17], we let [A,B] = C denote any one of the commutators [Ai, Bj ] = εijkCk (εijk is the
usual fully antisymmetric tensor), while [H,A] = B denotes [H,Ai] = Bi .

The modified commutators of so(4, 1)ε,η and so(3, 2)ε,η take the form [16, 17]

[J,J]ε,η = ε00,00J + η00,00αJ1l

[J,P ]ε,η = ε00,10P + η00,10αP 1l [J,K]ε,η = ε00,11K + η00,11αK1l

[H,P ]ε,η = ±ε01,10K ± η01,10αK1l [H,K]ε,η = ε01,11P + η01,11αP 1l

[P ,P ]ε,η = ±ε10,10J ± η10,10αJ1l [Pi,Kj ]
ε,η

= ε10,11δijH + η10,11αH1l

[K,K]ε,η = −ε11,11J − η11,11αJ1l.

(38)

In all kinematical algebras, the relations that determine the existence of central charges
are obtained from (28) by removing the terms that contain ε00,01, ε01,01, η00,01 and η01,01 (since
[J, H ] = [H,H ] = 0 always), and by setting ε00,00 = ε00,10 = ε00,11 = 1:

η10,10 = ε10,10η00,00 η11,11 = ε11,11η00,00

η01,10 = ε01,10η00,11 η01,11 = ε01,11η00,10

ε10,10η00,11 = ε10,11η01,10 ε11,11η00,10 = ε10,11η01,11

ε01,10η11,11 = ε01,11η10,10.

(39)

The parameter η10,11, which occurs in the extension of the commutator [P ,K], is the only
parameter on which there are no conditions, as expected (see, for instance, [17]).

The Poincaré algebra is obtained from the de Sitter algebras by using the matrix

εPoin =




1 ∅ 1 1
∅ 0 1

0 1
1




which in turns leads to

ηPoin =




a ∅ b c

∅ 0 b

0 d

a


.
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Then equation (38) becomes

[J,J]ε,η = J + aαJ1l

[J,P ]ε,η = P + bαP 1l [J,K]ε,η = K + cαK1l

[H,P ]ε,η = 0 [H,K]ε,η = P + bαP 1l

[P ,P ]ε,η = 0 [Pi,Kj ]
ε,η

= δijH + δij dαH1l

[K,K]ε,η = −J − aαJ1l.

(40)

As expected, all the charges are trivial as they can be absorbed by shifting the generators as in
(7).

The Galilei, Newton–Hooke and static algebras are more interesting, since they have non-
trivial central extensions. For instance, the contraction matrix that corresponds to the Galilei
algebra is

εGal =




1 ∅ 1 1
∅ 0 1

0 0
0




and its ηGal matrix is

ηGal =




a ∅ b c

∅ 0 b

0 d

0


.

In this case, only the commutator [Pi,Kj ]ε,η = 0 + δij dαH1l can be extended in a non-trivial
way. This result is in excellent agreement with [17], with the central charge being proportional
to the mass operator.

One can also verify that for the Newton–Hooke and static algebras, defined by the matrices

εNH =




1 ∅ 1 1
∅ 1 1

0 0
0


 and εStat =




1 ∅ 1 1
∅ 0 0

0 0
0




the corresponding solutions,

ηNH =




a ∅ b c

∅ c b

0 d

0


 and ηStat =




a ∅ b c

∅ 0 0
0 d

0




also reproduce the extended commutation relations given in [17].

4. u(n − 1)-bosons limits

4.1. Z3 gradings and the su(n) → u(n − 1) ⊕ hw(n − 1) limit

Let us decompose the Lie algebra L into

L = n+ ⊕ L0 ⊕ n− (41)
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where L0 is a subalgebra and where n± span, respectively, nilpotent Abelian subalgebras such
that

[n+,n+] = [n−,n−] = 0

[L0,n±] ⊆ ±n± (42)

[n+,n−] ⊆ L0.

Such a decomposition, which is a Z3 grading with L0 the zero grade subspace and
L± = n±, occurs, for instance, when we consider the subalgebra chain su(n) ⊃ u(n − 1)
with L and L0 the algebras su(n) and u(n − 1), respectively. In this section, we will deal in
detail with this example. An analysis of the sp(2n − 2) → u(n − 1) ⊕ hw

(
1
2n(n − 1)

)
and

so(2n−2) → u(n−1)⊕hw
(

1
2 (n − 1)(n − 2)

)
contractions is identical to the su(n) case if we

choose in all instances L0 to be u(n− 1): the subspaces n± then contain, respectively, raising
and lowering operators with commutation relations having the structure given in equation (42).
The difference between su(n), so(2n − 2) and sp(2n − 2) lies in the dimension of the n±
subspaces. One should also note that, in all cases, the operators in n± are the components of
an irreducible tensor under the subalgebra L0.

Returning to su(n), we first give a basis for the Lie algebra u(n) in terms of n2 operators

{Eij , i, j = 1, . . . , n} (43)

with commutation relations

[Eij , Ekl] = Eilδjk − Ekj δil . (44)

A basis for su(n) is extracted by selecting the subset of generators

Eij i > j = 1, . . . , n lowering operators

hi = Eii − Ei+1,i+1 i = 1, . . . , n − 2 n − 2 Cartan operators

W = (n − 1)Enn −
n−1∑
i=1

Eii last Cartan operator (45)

Eij j > i = 1, . . . , n raising operators.

The contents of each of the Z3-graded subspaces can now be given explicitly. L0 consists
of a u(n − 1) ∼ su(n − 1) ⊕ u(1) subalgebra with ladder operators {Cij = Eij , i �= j =
1, . . . , n− 1}, together with the Cartan subalgebra of the initial su(n), the first n− 2 elements
of which form the Cartan subalgebra of su(n − 1). The Cartan operator of u(n − 1) not in
su(n− 1) is W . The L± subspaces consist of the (commuting) raising and lowering operators
{Aj = Ejn, j = 1, . . . , n − 1} and {Bj = Enj , j = 1, . . . , n − 1}, respectively.

We now consider the contraction of su(n) where only the commutation relations between
elements of the subalgebra L0 ∼ u(n−1) remain unchanged, whereas everything else is forced
to commute. In terms of ε, this amounts to setting ε01 = ε0,−1 = ε1,−1 = 0, but keeping
ε00 = 1. The parameters ε11 and ε−1,−1 are irrelevant. One can check that these values are
solutions of (12) once the irrelevant parameters have been removed. The corresponding ε

matrix is given by

ε =

 1 0 0

∅ 0
∅


 (46)

where the lines and columns are ordered according to the Z3 grading labels 0, 1,−1.
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To investigate the possible central charges associated with this contraction, we must solve
for the η’s. Observing that only ε00 is non-zero, we find that the only non-trivial relations
between the ε and the η are obtained only when two in the triple of indices (µ, ν, σ ) are 0.
Choosing µ = ν = 0 therefore yields

ε00η0σ = ε0σ η0σ = 0 → η0σ σ �= 0 (47)

with no conditions on η00 or η1,−1. The parameters η11 and η−1,−1 are irrelevant since the
commutators [Ai,Aj ] ∼ [L1,L1] and [Bi, Bj ] ∼ [L−1,L−1] are zero before the contraction.
Thus we have the solution matrix

η =

 x 0 0

∅ y

∅


 (48)

where x and y are arbitrary parameters.
The commutators in Lε,η are now given by[

Aj , Bi

]
ε,η

= yβ(+,j),(−,i) (i, j �= n)[
Aj ,Cik

]
ε,η

= 0 (i, j, k �= n)[
Bi, Ckj

]
ε,η

= 0 (i, j, k �= n)[
Cjk, Cli

]
ε,η

= δklCji − δijClk + xβ(0,j i),(0,li) (i, j, k, l �= n).

(49)

To complete the algorithm of section 2, we consider first the u(n − 1) commutators
of the type [Cjk, Cli]ε,η. Choose an su(n − 1) ⊕ u(1) basis in this subspace, with W as
the u(1) generator. If [Cjk, Cli]ε,η is a commutator of two su(n − 1) elements, then the
corresponding β(0,jk),(0,li) is either zero or equivalent to zero because su(n− 1) is semisimple.
If we have a commutator of the type [W,Cjk], then the corresponding β(0,jk),(li) is necessarily
zero by equation (9) because W commutes with every element in su(n − 1). Thus, since x is
arbitrary,

β(0,jk),(0,li) ∼ 0 ∀ (jk), (li) (50)

and we have [
Cjk, Cli

]
ε,η

= [
Cjk, Cli

]
. (51)

Consider now the commutators
[
Aj , Bi

]
ε,η

. Suppose first that i �= j . If L′
is considered

by itself we then have no reason to eliminate the charge yβ(+,j),(−,i). However, because we
consider L′

as a contraction of L, there are further constraints (of the type found in equation (21))
on β(+,j),(−,i); we will show that β(+,j),(−,i) is, in fact, equivalent to zero. Indeed, using (15),
we have β(+,j),(−,i) = α(0,j i), the shift of an su(n − 1) ⊂ L0 ladder operator, which in turn is
equal to β(0,hk),(0,j i), which has just been shown in equation (50) to be trivial. On the other
hand, when i = j we have

β(+,i),(−,i) = α(0,ii) − α(0,nn) (52)

which can be expressed as a combination of shifts of Cartan operators from the semisimple
algebra su(n − 1) ⊂ L0, all of which are equivalent to zero, plus a shift for the operator W ,
which is not in su(n − 1). In fact, there is no commutator [Eij , Ekl]ε,η in L′ that will yield
something proportional to W since it is in the centre of u(n − 1): the structure constants
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εµ,νc
(0,W)

(µ,i),(ν,j) are all zero, so that the charge β(+,i),(−,i) ∼ α(0,WW) cannot be eliminated by a
transformation of the type found in (9) and is therefore non-trivial. Thus, we can write[

Aj , Bi

]
ε,η

= δij yα(0,WW) (53)

which are the commutation relations of hw(n − 1). Combining (51) and (53), we see that,
when su(n) is contracted using the contraction matrix of equation (46), the only possible
central charge appears so as to deform su(n) into the direct sum u(n − 1) ⊕ hw(n − 1).

The same reasoning can be repeated for the sp(2n) → u(n) ⊕ hw( 1
2n(n + 1)) and

so(n) → u(n) ⊕ hw( 1
2n(n − 1)) contractions: since the graded structure of these is identical

to that of su(n), and since the structure of the ε matrix governing the contraction is the same
as in equation (48), the equations linking the η’s and β’s will be identical, as will be the final
solutions.

4.2. The so(2n + 1) → u(n) ⊕ hw(n) ⊕ hw( 1
2n(n − 1)) contractions as Z2 ⊗ Z3 graded

contractions

Suppose again that

L = n+ ⊕ L0 ⊕ n− L0 ⊂ L
but that, this time

[n+,n+] ⊆ n+ [n+, [n+,n+]] = 0

[n−,n−] ⊆ n− [n−, [n−,n−]] = 0 (54)

[n−,n+] ⊆ L0.

Such a decomposition occurs for so(2n + 1) with L0 = u(n). Because the subalgebras n± are
now nilpotent of order three, we will require a refinement of the grading found in the previous
section.

The so(2n + 1) algebra is naturally Z2 graded, the zero-grade subspace being the
so(2n) subalgebra spanned by generalized angular momentum operators {Lij , i = 1, . . . , 2n},
antisymmetric in ij , and the grade-one subspace spanned by the extra generators

L2n+1,2i−1 L2n+1,2i i = 1, . . . , n (55)

which are again antisymmetric under exchange of indices. The Z2 grading property (23) can
be verified from the commutation relations[

Lij , Lkl

] = −i(δjkLil − δjlLik + δilLjk − δikLjl). (56)

This grading is well known; whereas operators in the zero-grade subspace can be realized as
fermion pair operators (i.e. bosons),

Aij ∼ b
†
i b

†
j Cij ∼ 1

2 (b
†
i bj − bjb

†
i ) Bij ∼ A

†
ij (57)

the operators in the grade-one subspace are realized in terms of single fermions,

Ai ∼ 1√
2
b

†
i Bi ∼ A

†
i (58)

provided that the operators bi and b
†
j satisfy the usual fermionic anticommutation relations:

{bi, bj } = {b†
i , b

†
j } = 0 {bi, b†

j } = δij . (59)
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This Z2 grading of so(2n+1)was explicitly exploited in [19] (see equation (3.31) therein).
We now need to refine this grading so as to decompose further the zero-grade subspace, which
contains an so(2n) subalgebra. The Z3 grading appropriate for the analysis of so(2n) is
similar to the one that we used in the su(n) example of the previous section. Thus, the grading
underlying the analysis of so(2n + 1) is a Z2 ⊗ Z3 grading:

L = L00 ⊕ L01 ⊕ L0,−1 ⊕ L1,−1 ⊕ L11 (60)

with the subspace L10 empty.
These subspaces are spanned by

L00 = {Cij , 1 � i, j � n} Cij = 1
2 (L2i−1,2j + L2i,2j−1 + iL2i,2j + iL2i−1,2j−1)

L01 = {Aij , 1 � i, j � n} Aij = 1
2 (L2i−1,2j + L2i,2j−1 + iL2i,2j − iL2i−1,2j−1)

L0,−1 = {Bij , 1 � i, j � n} Bij = 1
2 (L2i−1,2j + L2i,2j−1 − iL2i,2j + iL2i−1,2j−1)

L11 = {Bi , 1 � i � n} Bi = 1√
2

(
L2n+1,2i + iL2n+1,2i−1

)
L1,−1 = {Ai , 1 � i � n} Ai = 1√

2

(
L2n+1,2i − iL2n+1,2i−1

)
.

(61)

This decomposition is presented explicitly for so(5) in figure 1. It is a non-generic grading,
the parameters εk,(10), ε(01),(01), ε(0,−1),(0,−1), ε(01),(1,−1) and ε(0,−1),(11) being irrelevant. The
subspaces L01 and L1,−1 form a set of raising operators where

[L1,−1,L1,−1] ⊂ L01 (62)

by virtue of the cyclicity modulo two and three, respectively, of the addition of the grading
indices in Z2 and Z3. L01 forms an Abelian nilpotent subalgebra. The parallel observations
hold for the set of lowering operators spanned by elements in the L0,−1 and L1,1 subspaces.

The subspace L00 spans a u(n) subalgebra of so(2n + 1). It contains a semisimple part,
the su(n) subalgebra with ladder operators {Cij , i �= j = 1, . . . , n}, together with the Cartan
subalgebra of so(2n + 1), the first n − 1 elements of which span the Cartan subalgebra of the

Figure 1. The root decomposition of so(5) along with the Z2 ⊗ Z3 grading labels.
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aforementioned su(n) semisimple algebra. Again, the Cartan operator of L00 that is not in
su(n) is the operator W = ∑n

i=1 Cii of equation (45).
To obtain the contraction so(2n + 1) → u(n)⊕ hw(n)⊕ hw( 1

2n(n− 1)), we must leave
only the commutators [L00,L00] unchanged, while all the others become zero. This can be
realized in terms of a Z2 ⊗ Z3 contraction in two steps, the first of which is to set any Z2

commutators of the type [L0i ,L1j ] and [L1i ,L1j ] to zero while leaving [L0i ,L0j ] unchanged.
This corresponds to the contraction matrix εV of (24). The second step appropriately contracts
the so(2n) subalgebra of the Z2 subspace labelled by 0. The contraction matrix was given in
(46) of the previous section. The desired Z2 ⊗ Z3 contraction is obtained by tensoring the Z2

and Z3 solutions and corresponds to the solution matrix

ε =
(

1 0
0

)
⊗

 1 0 0

∅ 0
∅


. (63)

In this matrix, the lines and columns are ordered as (00), (01), (0,−1), (1, 0), (1,−1), (1, 1).
The fourth line and fourth column, corresponding to the subspace (10), should be removed
from ε as the (1, 0) subspace is empty in the grading decomposition; this makes ε into a 5 × 5
matrix. Using the properties of tensor product of matrices, one can verify that a solution to
(13) is given by the tensor product of the appropriate η matrices:

η =
(

a 0
b

)
⊗

 x 0 0

∅ y

∅


 =




ax 0 0 0 0 0
∅ ay 0 ∅ 0

∅ 0 0 ∅
bx 0 0

∅ yb

∅




(64)

where a, b, x, y are arbitrary parameters, provided that we again remove from this matrix the
fourth line and fourth column corresponding to the subspace (10). Thus, we have

η(00),(00) = ax η(01),(0,−1) = ay η(1,1),(1,−1) = yb. (65)

The commutation relations now read

[Aij , Bkl]ε,η = ayβ(01,ij),(0−1,kl)

[Ai ,Bj ]ε,η = ybβ(1−1,i),(11,j) (66)

[Cij , Ckl]ε,η = [Cij , Ckl] + axβ(00,ij),(00,kl).

The subspace L00 spans au(n) subalgebra. We can then repeat the argument that led to (51)
to show that all the charges β(00,ij),(00,kl) are equivalent to zero. Furthermore, by repeating the
argument that led to (53), we see that the only non-trivial charges occur when the commutators
[Aij , Bkl]ε,η and [Ai ,Aj ]ε,η are proportional to elements in the Cartan subalgebra, i.e.

[Aij , Bkl]ε,η = δikδjl ayβ(01,ij),(0−1,ij) [Ai ,Bj ]ε,η = δij ybβ(1−1,i),(11,i) (67)

since otherwise the appropriate β’s are proportional to shifts of generators in the semisimple
subalgebra su(n − 1) ⊂ L0, and therefore equivalent to zero.

Now consider

[Aij , Bij ]ε,η = ayβ(01,ij),(0−1,ij) = −ay(α(00,ii) + α(00,jj)). (68)
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This shift is a linear combination of a shift of Cartan operators in the semisimple part of L0

and a shift α(00,WW) of the operator W not in this semisimple part. Eliminating the su(n) shifts
as they are equivalent to zero, we are left, in general, with

[Aij , Bkl]ε,η = −δikδjl ayα(00,WW) (69)

which are the commutation relations of the hw( 1
2n(n − 1)) algebra.

Finally, consider

[Ai ,Bi]ε,η = ybβ(1−1,i),(11,i) = ybα(00,ii). (70)

Once again, α(00,ii) is a linear combination of shifts from the Cartan subalgebra of the
semisimple su(n) algebra and a shift from the trace W , which is not in the semisimple part of
L0. After eliminating the former shifts as equivalent to zero, we find, in general,

[Ai ,Bj ]ε,η = δij ybα(00,WW) (71)

which are the commutation relations for the algebra hw(n). Combining all of these, we find
L′ ∼ u(n) ⊕ hw(n) ⊕ hw( 1

2n(n − 1)), as expected.
The solution η of equation (64) is not the most general solution to equations (6) coupling

η and ε (as was the case in [1] for the ε’s). The most general solution would have η(01),(11) and
η(0,−1),(1,−1) non-zero. Our interpretation of our solution is that it corresponds to a sequence
of deformations: first a Z2, then a Z3 contraction.

5. Discussion and conclusion

In this paper, we have introduced a way to generalize the theory of graded contractions in
order to include central charges, and therefore generate central extensions, which have one
more dimension than the original algebra. The method has been applied to two different
physical settings. In the first example, we examined kinematical algebras as continuous (in
the sense of [21]) contractions of the de Sitter algebras, whereas, in the second example,
we considered u(n)-bosons limits as contractions, discontinuous in the sense of [21], of the
classical algebras. The location of the central charges in Lε,η can be inferred from the grading
decomposition of L, which reflects the tensorial nature of the subspaces decomposing L, the
original uncontracted algebra. For the kinematical algebras, each Z2 ⊗ Z2 subspace carries
a representation of the group 4 ⊗ 5 of space and time inversion. In the second case, each
subspace carries an irreducible representation of the u(n − 1) subalgebra contained in the L0

or L00 subspace.
Non-trivial charges always occur, by construction, in the commutator of two commuting

Abelian subalgebras in Lε,η. Furthermore, we have [lµ,i , lν,j ]ε,η = ηµ,ν β(µ,i),(ν,j) �= 0 if
and only if (a) lµ+ν,k commutes with every element in L0 or L00, and (b) [lµ,i , lν,j ] �= 0 in
L. Consider, for instance, the (2 + 1)-dimensional de Sitter algebra, with L00 = {J }. This
subspace trivially commutes with itself, and we can have [K1,K2]ε,η = −kαJ 1l in the Galilei
algebra. In the (3 + 1)-dimensional case, however, L00 = {J} no longer contains Abelian
generators, and it is impossible to extend [K,K]ε,η in the (3 + 1)-dimensional Galilei algebra.
A similar line of reasoning can be applied to the u(n)-boson limits: the only non-trivial central
parameter occurs when a commutator in L is a linear combination of terms containing the
operator W , which commutes with everything in the u(n − 1) subalgebra of either L0 or L00.

We believe that our formalism is obviously not limited to the examples presented in this
paper. For instance, despite the fact that the interest in central extensions was originally
related to representations of algebras, we have not considered such representations at all.
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Also the method could be used to investigate the infinite-dimensional Lie algebras and
Sugawara construction, as is done in [22] by using standard Wigner–Inönü contractions. An
obvious continuation of this work is to study the deformations with central extensions at the
group level. Other possibilities include the extensions by spaces of dimension larger than
one.
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