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Asymptotic limits are given for the S@) WignerDﬂnn functions ag — o for three
domains ofm andn. Similar asymptotic limits are given for the $&) Wigner
functions of an irrep with highest weigkk,0) as\ —«. The results are shown to
be relevant to the analysis of experiments with quantum interferometer200@
American Institute of Physics[DOI: 10.1063/1.1358305

[. INTRODUCTION

The asymptotic properties of Wigner functions provide a classical interpretation of these
functions. This is of interest, for example, for the design and interpretation of quantum interfer-
ometer experiments. It is known that a passive optical element which linearly transforms two input
modes(beams into two output modes, is represented by &)Uransformatiort=* Similarly, a
three-mode passive element is represented b{Battansformatior:® Typically, the input modes
in multimode interferometry are minimal uncertainty wave packets containing large photon
numbers’ as a result, the relevant(®) and U3) transformations are close to corresponding
classical limits.

We show that different asymptotic limits correspond to different classical situations and/or to
group(and Lie algebracontractions. For example, in one limit, the group(3ltontracts to the
Euclidean group B) and, in another, it contracts to the Heisenberg—Weyl group(2I\Wf the
two-dimensional harmonic oscillator. Thus, the (8JUWigner functions, in the corresponding
limits, approach those of (B) and HW?2), respectively. Similar contractions apply to &

Some asymptotic limits of the SB) Wigner functions are knowfr.}* Others can be inferred
from known limits of the Jacobi polynomialsP{*)} to which the reduced S@) Wigner d
functions are relatetf In particular, the following limits can be found in Szégdook and

elsewhere:
Hny(x)=n!lim A~"2PM(x/)), 1)
A—oo
L{(x)= lim P{@A)(1—2x/B), 2
B—*
X o
J,(x)= Iim(—) P(*A)(cogx/n)), (3
hoo 2N

where Pff‘) is an ultraspherical polynomiaH,, is a Hermite polynomialj_g“) is a Laguerre
polynomial, andJ, is a Bessel function. These classical limits hold for any finite value of the
variablex. Hence, they give the asymptotic limits of the @WJd functions for values of their

dCurrent address: Facul®aint-Jean, University of Alberta, 8406 rue Marie-Anne Gaboury, Edmonton, AB T6C 4G9,
Canada.

0022-2488/2001/42(5)/2315/28/$18.00 2315 © 2001 American Institute of Physics

Downloaded 18 Oct 2001 to 216.211.76.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



2316 J. Math. Phys., Vol. 42, No. 5, May 2001 Rowe, de Guise, and Sanders

arguments close to 0 ar/2. For the applications we have in mind, the asymptotic behaviar of
functions is required over most of the range of its argument. This is not given by the classical
limits of Egs.(1)—(3). For example, it would be wrong to conclude from E®). that the value of
PM(x) approaches the valug"?H,(Ax)/n! as\— .

An example of the kind of classical limit we seek has been derived by Aretci'! who
show that, for finitd +m, the valued}, () of thed functions that are proportional to spherical
harmonics become proportional g, (\I(8— 7/2)) asl— o, whereu,, is a harmonic oscillator
wave function. It is shown in this paper, that asymptotic expressions of this kind can be extended
to arbitrarydjm’i(j_y) for finite m and ». We also give asymptotic expressions €, that apply
whenm andn are both finite and other expressions that apply whem andj = n are both finite.
We also show by numerical examples that the limits are approached rapidly with incrgasidg
that, between them, the three sets of expressions given cover the range of posaile values
for a given set ofd!,, functions.

The asymptotic expressions derived for (8Uin Sec. Il are applied, in Sec. lll, to give
corresponding limits for the S@3) Wigner functions for an irrep of highest weigt,0).

Applications to quantum interferometers are considered briefly in the concluding section.

II. LIMITS OF SU(2) WIGNER FUNCTIONS

The complex extension of the $2) Lie algebra is spanned by>22 complex matrices
{Jo.J. ,J_} which satisfy the commutation relations

[Jo.d=1=%+3., [J.,d-1=2J,. (4)

We consider an irrep in which these elements are represented by opéﬁ@t&ns,f]_} which act,
in the usual way, on a (2-1)-dimensional Hilbert space spanned by vectdfgn); m

=—j,...,tj}
Jolim)=mljm),
. : _ _ (5
Joimy=JiFm(=m+1) |jm=1).
Wigner functions for S(R) are defined by
Dl(a.By)=e"Mdl (B)e ", 6)
where
dho(B)=(imle”"#[jn), v

with J,=—3i(J3,—J_), is the so-called reduced Wigner function. We consider asymptotic ex-
pressions fod!. (B) asj— =, in three situations(i) whenn~j andm?<j2, (i) whenm~n and
m?~j2, and(iii) whenm~n andm?<j?2,

A. Harmonic oscillator limits

Forn=j, the reduced Wigner functiomi‘;nn, is given by

_ 2j)! _ _
dhi(B)= \/%(COSB/Z)”WQM/Z)J’“- ()

The derivative of this function vanishes wh@s= 3,,, where 8, is the semiclassical angle for
which cosB,=mnVj. For this angle
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j+m i j—m
coy Bn/2)= 2 sin(B,/2) = 2 9

B—PBm=2¢, [j+m=s, j—m=d, (10)

and the substitutions

give

(cosB/2)i M= (s/2j)¥] cosp— \/d/ssin 3,

11
(sinB12)i*™=(d/2j)¥% cos¢+ \/s/d sin p]°.
Defining the two functions
d s
X(¢p)=cos¢p— \/%Sinqﬁ, Y(¢p)=cosep+ \/;sinqs, (12

then gives

gl _[2))! s < g
mi(B)= \/mwx(tﬁ) Y($)". (13

The functionsX(¢) andY(¢) satisfy

d);(f)=—\/gY(¢), d%f)=\/gx(¢), (19
so that
f(#)=X($)°Y ()" (15
satisfies the equation
£= \/s—d#f. (16)
For small values of,
Jsd(X2—Y?)~—4jsing cosp, XY~cod . (17
Thus
ﬂ%—éll'SiLd)f(qb), (19
do COoS¢
with solution
X($)°Y(¢)?="f(p)~(cosp)". (19

Whens=j+m andd=j—m are both large, the asymptotic expression for the factdfials

(277
z!— 7 e %z%t l, (20
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FIG. 1. The reduced Wigner functiodfm(Xw) for j=20 and various values ah. Exact values are shown as thin
continuous lines and asymptotic values, given by @8), as broken heavy lines.

gives

mwsd

[(2))! s°df
stdl (22
Combining this expression with E¢19) gives the asymptotic expression, for large valueg of
+mandj—m

j 1/4
) | (21

- - . 1 1/2 -
dhi(B)=(=1)"mdl(8)— ( m) [cog (B~ Bm)/2)]Y

1 1/2
H(\/J—WTHIB) exd —j (B~ Bm)?2]. (22)

This asymptotic expression is compared with the exact result for a range of value$oof
j=20 in Fig. 1. It is seen to be remarkably accurate evermnfarlose toj. It breaks down for
m= *]j but then we have

dl,(B)=[cog B/2)1% —exd —j g%4],
. _ (23
d_;;(B)=[sin(B/2)] —exd —j(B—m)%4].

These results have a simple classical interpretation. A state with angular momjeanahz
componentm=j is a minimal uncertainty state. It has a density functjmj(6,¢)|2 that is
independent of and concentrated about tife= 0 direction(the z axis). The rate of falloff of the
density with increasing angle is indicated by

(ile B jjy=dl (), (24)

which, as seen from Eq23), decreases rapidly with increasiyy for large values of. This is

what one would expect from classical mechanics where the angular momentum vector is directed
along thez axis whenm=j. By the same token, a classical angular-momentum vector with
z-componentm makes an anglgg,, with the z axis with cosg,=m/j. Thus, the rotated state

e 'Amly|jj) is expected to have maximum overlap with the stite) and conversely the overlap
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(imle” 4 jjy=d!,(B) 25)

is expected to peak at a value gfequal to3,,, as indeed it does.

A significant property of the above asymptotic limits are that they are all simple harmonic
oscillator coherent states; i.e., harmonic oscillator ground-state wave functions centeredabout
We now show that, in th¢—cc limit, the otherd!,, functions, form small andn~j, approach
excited harmonic oscillator coherent states.

Consider first thed'On function, which for integer values df is proportional to a spherical

harmonic
| N 4ar

For|—o, we have, from Eq(22), the limit

1/2
1
do(0)—| —]| exgd —1(9—m/2)%2]; 2
which is a harmonic oscillator ground-state wave function centered #lzout’2. Letn=I1—v, so

that v<| whenn~|. Thus, if ¢;, denotes the function

4
()= (= 1)7dyy (0% 712) = (= 1)\ 57 Yo 0+ 712,0), (28)
then, in thel —co limit,
1 1/2
ol a)ﬁ(w_—w) e 2=~V (\1 9), (29)

whereug is the harmonic oscillator ground-state wave function.
For > v andl—, the limits

I Yo = w2 =+ D) Y = V200 Y g,
Y=V =) (v D) Yy =20 D) Yy,

imply that the angular momentum raising and lowering operators contract to harmonic oscillator

lowering and raising operators, respectively. From the explicit expression for the actionsJof the
operators on spherical harmonic oscillators, we also have

(30

- d
[J-Y) =, ](0+w/2,0)=| (I— v)taneid—0 Y- ,(6+m2,0) (31
so that, for smallp and|> v,
. d
[JtY|‘|_V](0+7T/2,O)—> |0i@ Y|’|_V(0+7T/2,O). (32)

It follows that, in thel — oo limit,

1

1 d 1 1d
1(0)= === 10— — | (0)= == —| VI 0= —=— | 1,(0),
¥,0+1(6) 2|(V+1)( 0 de)em (0) (VHM(M ﬁdg)tm (), (393
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FIG. 2. Spherical harmonicé,,,(8,¢) for m=20, 18, and 16 plotted as a function@for ¢=0. Exact values are shown
as fine continuous lines and asymptotic values, given by(&qg, as heavy dashed lines.

thereby providing a recursion relation for thlg, functions. Sincey,q is a harmonic oscillator

ground-state wave function, the recursion relation is easily solved to give

I (0)—1" Y, (1 6), (34)

whereu,, is the harmonic oscillator wave function

1 1/2
— —x212
u,(x) ( ﬁzvu!) H,(x) e (35

with H, a Hermite polynomial. Thus, we obtain the asymptotic limit of the Wigner function for
v<| and|— oo,

dy,_(B)—(—1)"1 Y, (I (B—7/2)), (36)

and the corresponding asymptotic expression for a spherical harmonic

21+1 20+1
Yim(0.0)=(= D™\ = dom(0)— (= 1)\ 1" (V0= 712), (37

whenm~|. The latter expression accords with the result obtained by Arestchil! after cor-
rection for what are presumed to be typographical errors.

The asymptotic expression fof;,, is compared with exactly computed spherical harmonics
for =20 andm=20, 18, and 16, in Fig. 2. Comparisons fer 20 andm=19, 17, and 15 are

0.4
0.2

Y20,m(x1,0) o1

FIG. 3. Spherical harmonicé,,,(8,¢) for m=19, 17, and 15 plotted as a function@for ¢=0. Exact values are shown
as fine continuous lines and asymptotic values, given by(Eq, as heavy dashed lines.
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FIG. 4. The spherical harmoni,, 1A 6, ¢). Exact values are shown as a fine continuous line and asymptotic values, given
by Eq. (37) multiplied by a factor 1{sin 6, are shown as a heavy dashed line.

shown in Fig. 3. Even for finite values bthe agreement is excellent fémear/2. It deteriorates
as 0 approaches 0 ofr. This can be attributed in part to the fact that the volume element for the
spherical harmonics is sthdd whereas the corresponding harmonic oscillator wave functions are
normalized without the factor sifh Thus, one expects better agreement if the asymptotic expres-
sions are renormalized by a factor/sin 6. This indeed turns out to be the case. Figure 4 shows
that, with this adjustment, quite good agreement can be obtained even=fap.

A similar analysis can be applied to othéfunctions. Forl>» andj— o, the equations

Jodh o, =Vv@j—v+D)d o —V2jvd g,
Jodhy,=V@i=n(+ D dh = V2i(r+ D dy o,

imply that J. can again be interpreted as harmonic oscillator raising and lowering operators.
Starting with the shifted harmonic oscillator wave functions

(38)

1 1/2 1 1/2
d (B)—| ——— | e iB-Bwi—| __—__ i (B— ), 39
1i(B) ( Toan ﬂm) e ( T Bm> Uo(\j (B—Bm)) (39
we find, for small values of that
1 1/2
di (=1 ——— j(B— 40
hi-u(B)—( >( NET ﬁm) u,(Ni(B—Bm) (40
asj—oo, and
1 1/2
d! — (=) ——— i(B—Bm))- 41
L m(B)—(~1) ( o Bm) u,(\Ni(B—Bm) (41)
Similarly, from the symmetry properties of tliefunctions,
1 1/2
d, (B— (-1 ——— j (B— 42
b i(B)—(—1) <ﬁsinﬁm) u,(\j (B=Bm) (42
and
1 1/2
d — (=1 —— i(8— . 43
L m(B)—( )(ﬁsmﬁm) u,(Ni(B—Bm) 43
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FIG. 5. The Wigner functiomﬁ%3 compared to its asymptotic harmonic oscillator limit. Exact values are shown as a fine
continuous line and asymptotic values, given by &j), as a dashed line.

Figure 5 shows the functio«if%3 compared to its asymptotic harmonic oscillator limit. Again
further improvement in the limit can be obtained by dividing the asymptotic expressigsibys.

B. The SU(2)—HW!/(2) contraction

The above harmonic oscillator limits fd{nn apply whenm is small andh is close to+] (or
vice versa. They are at their best, for finite values pf when g is close to the appropriate
semiclassical angle and deteriorate @sapproaches 0 orr. When m~n, there are other
asymptotic limits which derive from contractions of the @)Lie algebra.

We consider here a HV¥) contraction of SW2) which follows from the
Holstein—Primakoff’ representation in which the angular momenta are realized as the operators

Jo=j—-n, J.=\2j—-na, I_=a'\2j—nm; (44)

a' anda are the raising and lowering operators of a simple harmonic oscillator with commutation
relation

[a,a"]=1, (45)
andh=a'a is the number operator. In this representation, a $jai® becomes a simple harmonic
oscillator statg ) having u=j —m quanta, for whichi|u)= u|u). It follows that, when acting
on states for whichm is close to some value> —j, the angular momentum operators approach
the asymptotic forms

Jo—ijl—afa, I,—\j+ma, JI_—\j+ma'. (46)

Likewisejy—>%i Jj+m(a'—a) and, form andn both close tan= }(m+n),

A B)—(j —mle! V2 ATTmET-a)|j ). (47)
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The last expression, derived from a contraction limit of the(ZUWie algebra, is at its best for
small values ofg and form andn far from —j. A similar expression holds fan andn far from
+]j.

From the identity

ea(aff a) eaaTef a2/2e7 aa’ (48)

it follows that

<M|ea(aT—a)|V>: <O|aﬂeaaTe—aa(aT)V|O>e—a2/2

1
V! vl

- (Ol(a+a)(a)'|0)e "

N

V p 2

Now recalf® that, for u—v>—1,

(_a,Z)vfp

L =0

(5

WhereL(V"_V) is a generalized Laguerre polynomial. Thus, for v>—1, we obtain the identity

vl
(ule @ D)=\ et L e e (51

and, witha= 3 8\j + (m+n)/2, we obtain the asymptotic expression

. i—n)!
dhnn(B)— \/((jj_—rr;))!(ajmnﬁ)”_mL,("}m)(ajzmnﬁz) e~ 4mB2, for m=n, (52)

where ajmn=%\/(2j+m+ n)/2. This expression is valid for small values ﬁfandj+ﬁ>n
—m. Form=n andj+m>m-—n, the identityd), (B8)=d! (—B) gives

B>\ S ()™ LT @58 €, for m=n. (69

The asymptotic expressidb3) for dfgﬁis compared with the exactly computed function in Fig.
6.

Other expressions are obtained from the symmetry properties cd'gnéunctions. For ex-
ample, an asymptotic expression forclose to—j andn close to+ j is obtained from the identity

d (B)=(-1))""d  (B+m). (54)
These limits are approached for the largest rangg8 whenm andn are similar and close to

+j. This is because the $2)—HW/(2) contraction is valid to within some specified accuracy
over the largest span ¢fjm)} states whenm| is close toj.
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FIG. 6. The reduced Wigner functiaﬁgylg(Xw). Exact values are shown as a fine continuous line and asymptotic values
given by Eq.(53), as a dashed line.

C. The SU(2)—E(2) contraction limit

For m close ton and both far from=*j, a more appropriate contraction is the one in which
SU(2)—E(2), where E2) is the Euclidean group of transformations of the two-dimensional plane.

This limit is obtained from the observation that, jgs- m?— o, the right-hand sides of Eg5)
approach values given by

Jolim)=m|jm),

(59
ji|jm>—>\/j2—m7|jmil>=j SinBm|jm=1).

With cosBm=m/j, \j?—m?=] sinB5, and, for values ofn close tom, the SU2) states are
represented, in thg?—m?—o limit, as functions on the circle, i.ejm)— i, with

eim0
Ners (56)

and the angular momentum operators are represented

Ym(0)=

n d N :
J0—>—iﬁ, J.—jsinBme . (57)
It follows thatflyﬂj sin B, sin @ and, form andn both close tam= 3 (m+n),

) 1 (2=n .
djmn(ﬂ)g’_ e—l(m—n)ee—l,B] smﬁasmﬂda:(_1)m—nJm_n(jﬁSinIBE)’

27 ) (59

whereJ, is a Bessel function and we have used a knWhintegral expression fod,,. This

expression is a generalization to finite values of théunction’s argument of the known
asymptotic limit, for infinitesimalg/j, 23

lim d (/1) =(—1)""J_n(B). (59)

j—oe
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0.4

FIG. 7. The reduced Wigner functiajﬁf’Z(XTr). Exact values are shown as a fine continuous line and asymptotic values as
a dashed heavy line. Fox<0.5 the asymptotic values are given by E88) and for 0.5<x<<1 they are given by Eq.
(61).

The expressions given by E(7) are the limits of a general coherent state representation of
the SU2) algebra carried by functions on the circle. Note, however, that since it is derived from
a contraction of the Lie algebra, it is only valid locally. Thus, the asymptotic limit of(&§). is
only expected to be good for relatively small valuesoAind m—n.

The asymptotic expressidn8) for the reduced Wigner functiodéf’2 is compared, for &3
</2, with the exact function in Fig. 7. It is seen to be an excellent approximation for small
values of its argument. It is appropriate to restrict the use of(&#).to 0< 8< =/2 because, for
B in the ranger/2< B<, a better limit is obtained by use of the identity

dho(B)=(=1)*"d], (7= B), (60)
which, for 77/2< B<r, leads to the asymptotic expression
dhn(B) = (= 1) ™o (§(B= 7)SIN Bim-nyr2) - (61

Comparison of the exact expression with Esp) for 8 in the range 6= < 7/2 and with(61) for
7/2< B=< is shown in Fig. 7.

For small values of3 it turns out that a remarkable improvement in accuracy is obtained by
the ad hocreplacement —j+1/2 in the argument of the Bessel function of the asymptotic
expression. This replacement has also been found by other authors to increase numerical accuracy;
to first order, it can be regarded as a substitutiorj dfy vj(j+1), which is the appropriate
classical value of the magnitude of the angular momentum. The modified estimate is compared
with the exact expression faig%(x) in Fig. 8.

The above results have a natural interpretation in terms of g2)StE(2) contraction. If we

define
i
sz(JHﬁL), y:—m(h—L), J.=Jo, (62
we obtain the commutation relations
. . i
[J..x]=ly, [J.,y]l=—ix, [xy]= WJZHOY (63
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FIG. 8. The reduced Wigner functicdif’z(xﬂ. Exact values are shown as a fine continuous line and asymptotic values as

a dashed line. The asymptotic expressiorfanis given by Eq.(58) and in(b) it is given by (58) with j replaced byj
+1/2.

asj sin By—. They are the commutation relations of the infinitesimal generators of the Euclidean

group in two dimensions. Moreover, the @)Jrepresentation with highest weightontracts to a
representation of the Euclidean grouf2Ein which

d
X—C0s6, y—sing, J,——i do (64)
This contraction limit makes sense geometrically if one considers the manifold ¢f) SU
coherent states in the Hilbert space generated by applying &R)Stansformations to a fixed

state|jm). This manifold has the geometry of a sphere and one knows that small neighborhoods
on a sphere look locally like neighborhoods of a two-dimensional Euclidean plane.

D. Summary of SU (2) Wigner function limits ina U (2) basis

In summarizing the limits fod!. ., it is useful to characterize the value mfas being central
if m~0 and extremal in~ = j. The various asymptotic limits fat!,, are then at their best in the
following situations: (i) Harmonic oscillator limits; whemm is central andn is extremal,(ii)

HW(2) contraction limits; whem andn are both extremal, an(ii ) E(2) contraction limits; when
m andn are both central.

For application of the above results to &) the results are most usefully expressed in(a)U
weight basis in which a stat¢m) is identified with the W2) weight statgsd) with s=j+m and
d=j—m. A reduced S(R) Wigner function is then expressed

dl1(B)=(s1d4| Bl s202), (65)

withs;=j+m, d;=j—m, s,=j+n, andd,=] —n. The above asymptotic limits are summarized
as follows.

1. Harmonic oscillator limits

If mis central thers=j+m>0 andd=j—m>0 in thej— o limit. Equations(40) and(41)
are then expressed

D\ 14
(sclB12i ~nn)=(~ 1" 42fnnlBlsdh— 3svaz (~17| &g (T8 B, 9

wherej=(s+d)/2 and
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s—d ) sd
COSBsa=grg — SNBsa™ T (67)

andu, is given by Eq.(35). This limit is valid for small values of.

2. HW(2) contraction limits

If m andn are both close t¢, thens;>d; ands,>d,. Substituting the expression
Bfmn= (2] TM+N)=5(51+5,) (68)

for afi, , into Egs.(52) and(53) then gives, in this limit,

do! (B [si+s,
<Sld1|'8|szd2>_>551+d1!52+d2 @(E 2

for s;<s, and

[dit [ B [si+s;
<Sldl|B|SZdZ>_}551”1152”2 @<_E 2

for s;=s,. '
If mis close toj andn is close to—j, so thats,;>d; ands,<d,, the identityd!. (8)
=(—1)7"d!, _(B+m) interchanges the coefficienss andd, to give

Sp—

S1
— _p2
Lgszz Sl)(,82(31+sz)/8)e B?(s1+5,)/16
(69)

S1—

S2
— _p2
Lffll 32)(,82(sl+sz)/8)e B(s1+5)/16

(70

(5101 Blsp0) = (—1)%(s,dy| B+ 7|ds,) (72)
for which Eqgs.(69) and (70) continue to apply. Similarly, fos;<d; ands,>d,,

(8101| Bls2d2) = (= 1)%(dy ;| B+ 7r|s,dy), (72)
and, fors;<d, ands,<d,, the identityd’,(8)=(—1)""d_ . _.(B) gives

(8101]Bls202) = (— 1)1 %2(d154| B]d5Sy). (73

3. E(2) contraction limits

Whenm andn are both small ang is large,s;>0, d;>0, s,>0, andd,>0. Replacing
2j sinBy by \(s;+5,)(d,+dy) in Eqg. (58) then gives

(1d1| Bl2d2)— 85, 1 a, 5,40, — L)% %2Jg o, (V(S1+5,)(d1+d3) B/2). (74)

. (A,0) SU(3) WIGNER FUNCTIONS

The complex extension of the(B) Lie algebra is spanned by>33 matrices{C;;} which
satisfy the commutation relations

[Cij . Cil= 6jCit — i Cy; - (75

The SU(3)CU(3) subalgebra is spanned by the subfgt;— Cp,,Cop— Ca3,Cjj 51 # -
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A. Representations of the U (3) Lie algebra

We consider a (B) irrep of highest weightX,0,0) in which the{C;;} matrices are repre-
sented by operator{f:ij} on a Hilbert space spanned by a weight békis}. The components of
a weightv=(v,,v,,v3) are the eigenvalues of th&,; operators, viz.

éii|V>:Vi|V>, i:1,2,3, (76)

and sum to give; + v, +vz=N\. For a (\,0,0) irrep, the weight basis states are defined uniquely,
to within phase factors. Such an irrep restricts to ar{33liirep of highest weight\,0).

The basis state§|v)} are conveniently realized within the space of a three-dimensional
harmonic oscillator. Thus, ifc] ,c;;i=1,2,3 denotes a triplet of harmonic oscillator raising and
lowering operators, théorthonormal weight states are

(e 1(c))2(ch)s

|v)= |0), vi+vyt+vs=A, (77)
Y Vl! Vz! V3!
where |0) is the harmonic oscillator lowest-weigktacuun) state, and the (3) operators are
expressed
Cij = a.iTa.j . (78)

It follows that thei #j operators act on the weight states according to the equation

éij | V1,Vp, V3>: V(Vi + 1) VJZ 51}{ ,Vi+151/j/ ,ijlgvl; ,Vk| V:;. rVé !Vé>! (79)
fori#k#j.
The above(weight) basis reduces the $2),;CSU(3) subalgebra spanned by thespin op-
erators
1,=Cp, 1-=Cg, 10=3(Cy—Cs. (80)

The corresponding-spin quantum numbers are identified by setting
vi=A—2l, wv,=l+N, ws=I—N, (81)
and writing
(CI))\72I (C;)IJrN(C;)IfN

V=201 J(T+N)I(1=N)!

[v)=[IN)= |0). (82

The action of the S(2),5 operators is then expressed in the usual way by

TolINY=N[INY,  TL[INY=VIFN)(I=N+1) [IN=1). (83)
Similarly, the SU2),, and SU2),; subalgebras are spanned Byspin andV-spin operators,
respectively,
U,=Ci,, U_=Cyx. Ue=3(C1i—Cy), (84)
V,=Ci3, V_o=Cs, Vo=3(Cy—Ca. (85)

Thus, we have the identificatiofs)=|IN)=|UM)=|VP) with
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v=A—21=U+M=V+P,
vy=1+N=U—-M=\-2V, (86)
va=I—N=A—2U=V—P.

It is important to note that, for &,0) irrep, the above weight basis becomes identical to the
basis{|jIN)} constructed, for a general $8)DSU(2), irrep, by VCS method$ and used in the
computation of S(B) Clebsch—Gordan coefficient$.[For a (\,0) irrep the extra labej in
{|jIN)} is redundant and can be droppgdhe bases are identified explicitly as follows. First
observe that the highest weight state of the(3UW\,0) irrep is the state

(ch*
|¢>: \m |0> (87)
Thus, with the observation that
Al
(c)* "(c)M0y= V—l!<cI>V1|0>, (89)

we obtain the expression of the3)DSU(3) basis states

! ~ ,\
)=y (Ca0"2(Cal6). (89

This basis is identical to that of VCS theory,

(A =2D)! ()" M(Cap' ™

=14) (90)

IN)= Al (1+N)!(1=N)!

with the relationship betweemnandIN given by Eq.(81). It is also identical to the Gel'fand basis
{Iv1)} used for a\,0) irrep in Ref. 20 withl = 5 (v,+ v3) (cf. appendix of Ref. 19

B. (N,0) Wigner functions for finite A

As shown recently® an SU3) element can be expressed as a product of25subgroup
elements in the form

9(a@1,B1,v1,2,B2,a3,B3,73) =Rox( @1, 81, v1)Rid a2, B2, @) Rog( a3, B3, v3). (92)

This is a particularly convenient parametrization because, in the above basis, the matrices of the
SU(2),5 rotations are given by standard &Y Wigner functions; viz.

(I'N'|Rpg(@, B, 7)|IN)= 8 Dy (@, B,7) (92
or, in terms of weights,
. N—wvq)/2
<V| Ras(a,B, 7)|M> = 51/1,Mlpgyzfil)/z,(#zf;%)/z(“ug' Y). (93

Similarly, for the SU2),, matrix elements

(A pg)/2
(1= 1) 12,(n = p3)I2

(plRud e, B Y1y =8, D (a,B,7). (94)
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The expressions are simplified by writing the @UWigner functions in a (2) basis[cf. Eq.(65)]

in which
Dh(a,B,7)=(j+m,j—m|glj+n,j—n)e (M=), (95
Then
(VR @, B, 1) | 1) =8, (vovs| Bl popg)e (2 et ko nad 2,
| (96)
(u|Ria, B, y)| ") = 5#3,M§<ﬂ1M2|B|Miﬂé)eﬂ[(“17“)“(#17“2)71/21
and
\,0
DE,’V')(alvﬂla711a2iﬂ21a31B3173)
=g il(ra=va)ag+(\=v))yy+2(vy + vi=N)ag+ (A= vy)ag+(vy—rg)y3l/2
Nmax .
X >, nimaztas)(y, py BN — vy —n,n)
n=0
X(vy,N=v1=n|Bav1 A= vi—n)(A—vi—n,n|Bs|vyvs), 97

wheren,=Min(\ — vy, A —v7).
Expressions for the S3) Wigner functions of other irreps are given in Ref. 20.

IV. (N,0) WIGNER FUNCTIONS FOR A—

Wigner functions for an S(B) (A,0) irrep have a number of asymptotic expressions which can
be obtained by substituting the corresponding limits for thé2sWigner functions into Eq(97).
The appropriate limits depend on the location of the weighésd v’ in the weight diagram. A
weight can be characterized as extremal if it is close to a vertex, or central, if it is far from a
vertex.

A. Limits of (\,0) Wigner functions for v central and »’ close to a highest weight

Whenv' is of highest weight, i.ex’ =(\,0,0), the expression for the $&) Wigner function
of Eq. (97) reduces to

DMNy(@1.B1,v1,@2,82,a3,B3,vs) =€ vz radaat (o) vt 2iasl2
X(wavs| B1IN—v1,00(v1, A — v B5[NO),  (99)

where, to simplify the notation, we have identified the weights= (\,0)=(\,0,0). The reduced
SU(2) Wigner functions in this expression are of the type with asymptotic limits given by22y.
Thus, we obtain

1/4
A —i - 2 12
D(V,()}\)(alvﬂl1711a21ﬂ21a31B3173)*(%) e (vo=vg)ayt(vatvy)yy+2viar]

X @ [(v2+ v3)(B1= B0 )+ N(Ba= By, vyt 0,) 114 (99)
with 8, defined by Eq(35).

More generally, forv’ close to the highest weight, the use of the harmonic oscillator limits of
Eq. (66) give
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A
DS,,,),l(alaﬁl171ra211821a31183173)

e ilramva)agt (N =)y +2(ny v = Nagt (N = v ag+ (v = vg) y3l/2

N—v]
)\_ v 1/4 1 )
1 2 eln(yl—a2+a3)

_ 1/4
" (—1)%—%( A—n )
n=0 n

4y vyvs N—v—

X un( \} %()\_ Vl) (31_181/2,1/3))
XUz n(NFN=N) (B2~ Buy x—vy—m) di - n(Ba), (100

wherel = 3 (v5+ v3) andN=3 (v5—v3). It can be seen that this expression reduces to that of Eq.
(99) whenl=0 andv’'=(A,0,0).

This limiting expression for tha =60 SU3) Wigner function is compared with the exact
expression for a range of values of some of its arguments in Fig. 9.

B. Limits of (A\,0) Wigner functions for » and »’ both close to vertices

If vandv' are both close to the highest weight, then the first and la§2SWigner functions
in Eq. (97) are those of small-dimensional 8) irreps, while, for the middle function, the limit
given by Eqs(69) and(70) applies. Thus, fow;=wv,,

DE,)'\,),/(a'l!Bla711“2:B21a3aﬁ3173)

)\—Vi o U

=3 e i(v1t vy —A+n)as 4 /()\ vi—n)! (@\ / ntn
n=0 ()\_Vl_n)! 2 2

(N—wy)/2 (A=vp)2
(vp—v3)/2,(\— Vl—zn)/z( @1.81,71) D (A=) —2n)/2, (v}~ Vé)/z( @3,P3:73)

!
Vl_ Vl

X D

XL (B2 + v B)e Aol v (101

’
Y1
and, forv;<wv,,

A
DS,,,),/(alvﬂla71:“2132:“3!33’73)

)\*Vl _ _ 1
LS it vioaemag /M( Bz it
n=0 (A—v;—n)! 2 2

(N—wq)/2
(vy— 33)/2()\— v —2m2 @181, 71) D

’
Vi Vl

(A—w))I2
<D (x—yi—zn)/z,(ué—vé)/z(a?"B3’73)

X LU (B2( + v])I8)e Balrat e, (102

Vl—n

This limiting expression for tha. =60 SU3) Wigner function is compared with the exact
expression for a range of values of some of its arguments in Fig. 10.

If vis near(\,0,0 andv’ near(0\,0), then the matrix elemerft,v5| 81|\ — v;—n,n) in Eq.
(97) is a reduced Wigner function for a low-dimensional (8JJrrep. The second matrix element
(v1,A—v1—n|By|v],A—v1—n) is one for whichv;>\—v;—n and v;<A—v;—n. Thus, by
Eq. (7)), it is re-expressed in the form

(vi,N=v1=n[Bo vy A= vi—n)=(=1)*""1" vy A= v —n|Bo+ wN—vi—n,v)
(103

Downloaded 18 Oct 2001 to 216.211.76.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



2332 J. Math. Phys., Vol. 42, No. 5, May 2001 Rowe, de Guise, and Sanders

S
0.004 ~
0.003
0.002
0.001 ~
A
0.2 0. 0.6 0.8 1 -0.02 X
X
-0.001 -0.04
-0.06
5 =03 B,=mn7 % =04 B,=n7
R - A 0.04 .
0.04 Al
0.02
0.02
Ja 0.2 0.4 0.6 0.8 1
|
" 0.4 % .6 0.8 1 e
-0.02
-0.04
-0.04
-0.06
n=05 B,=w7 5 =06 B,=m7
0.0125
0.06 /\
0.01
0.04 / \\
002 0.0075
0.005
0.6 0.8 1
-0.02 % 0.0025
.
0:04 0.2 0.4 \\/6 0.8 1
-0.06 -0.0025 \/ i
5 =08 B,=wl 5=09 B,=w7

FIG. 9. The SW3) Wigner functionD(V'\i,(O,/_%l:xlrr,O,OB2=x2fn,0,ﬁg= 7/7,0) for \)=(60,0,0), v=(24,21,15),v'
=(54,4,2). The top graphs show, reépectively, the surfaces for the exact function and its estimate uclog) Eghe
sequence of slices provide a detailed comparison between the exact fufdtibne) and its estimatédashed lingfor the
sequence of values @,=0.37,0.4,...,0.87.

Downloaded 18 Oct 2001 to 216.211.76.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math.

Phys., Vol. 42, No. 5, May 2001

Asymptotic limits of SU(2) and SU(3) Wigner . . .

2333

B
R
ORI
0.15 w3
0.1 0.075
0.05 0.05
0.025["\\
0.2 .4 0.6 0.8 1
*;
-0.05 -0.025
-0.1 -0.05
H=01 B,=mw7 % =02 B,=w7
0.1 i
0.05 0.05
0/2 0.4
X
005 / -0.05
N~ -0.1
X =03
0.02 —~
// S
0.2 0.4 N0 e——>0.8 1
/ . -0.001 /
1 /
-0.02 /
-0.002
-0.04 / \ /
-0.06 / -0.003 \\ /
/
</ -
5=05 B,=w7 5=06 B,=n7

FIG. 10. The S(B) Wigner functionD(f’,),,(O,ﬁlzxlw,0,0,82:x27r,0,,83:17/7,0) for \)=(60,0,0), v=(52,6,2), v’
=(50,7,3). The top graphs show, respectively, the surfaces for the exact function and its estimate u&l0g) Eghe
sequences of slices provide a detailed comparison between the exact fufdtibne) and its estimatédashed lingfor

the sequence of values g5=0.17,0.27,...,0.67.
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for which Egs.(69) and(70) apply. The third matrix element\ — v;—n,n|Bs| v,v3), is one for
which A —v;—n>n and v5>v; and for which Eqs(69) and(70) apply directly.

Asymptotic expressions are similarly found forand »' near other vertices. Thus, for in-
stance, ifv andv’ are both close t¢0,\,0), then each of the three $2) Wigner functions in Eq.
(97) will be approximated by the limit given by Eq&9) or (70).

C. (A,0) Wigner functions for » and »’ both central

If vandv' are both central weights of(@,0) irrep and\ —«, then the E2) limit of Eq. (74)
applies. If we replace the SP) matrix elements in Eq97) by their E2) limits, we obtain

A
DS,’,),r(al B1,Y1,@2,B82,23,B3,v3)
_)efi[( vo—vg)agt(N—vy)y1+2(vyt+ Vi*)\)azw‘()\* V]’_)a3+(véf Vé)’)/3]/2

nmax

x 2, ennmaztedy, | (\(2v,+ va—n)(vgtn) B1/2)
n=0

XJV&*H( \/( v1+v1)(2N—vy—v;—2n) Bo/2)

XJn,,,é(\/(Zvé-l-vé—n)(vé—kn)B3/2). (104

It is important to note that this expression presumes & [nit to be applicable for all values
of n that occur in the summation. The following considerations show that this presumption is valid
for sufficiently small values o3, and B;.

Consider the matrix element

N—vq)/2
<V2V3|:81| A— vi—n, I’l> = dEyzf ,2)/3’()\7 ,,172”)/2(/31)- (105)

For v,=v3=\/3, for example, this matrix element becomes

N3 127
doxz—n(B1)= me/ax/sfn(ﬁbo)- (106)

For smallB,, it takes its largest values wher=\/3. Moreover, Figs. 2 and 3 show that, feor
=60, the value of this matrix element becomes negligible 8o 7r/5 asn approaches 0. A
similar result holds for the matrix elemefit — v{—n,n| B vyv3) for vo~vi~\/3.

The limiting expression104) for the A=150 SU3) Wigner function is compared with the
exact expression for a range of values of some of its arguments in Fig. 11.

V. APPLICATIONS TO QUANTUM INTERFEROMETRY

Quantum interferometers are important in quantum information theory and for precision mea-
surements of phases shifts, e.g., for the detection of gravitational Waves. accuracies obtain-
able with such devices are naturally expressed in terms of Wigner function§2-SVigner
functions for two-channel interferometers and(SJUWigner functions for three-channel interfer-
ometers.

A. Two-channel interferometry

A two-channel interferometer is an optical device, such as a beam splitter or a Mach—Zehnder
interferometer, that transforms a two-channel input state of the electromagnetic field into a two-
channel output state. If the device consists of passive optical elements that conserve photon
number(i.e., the sum of the photon numbers in the output channels equals the sum in the input
channely then it is characterized by a(P) transformatiort.
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FIG. 11. The SW3) Wigner function DE’}\I)I,(O,Bllew,o,o,gzzX27T,O,ﬁ3: —/9,0) for (\)=(150,0,0), v
=(46,44,49),v' =(47,52,51). The top graphs show, respectively, the surfaces for the exact function and its estimate using
Eq. (104). The sequences of slices provide a detailed comparison between the exact ffuditilbme) and its estimate
(dashed lingfor the sequence of values g,=0.17,0.27,...,0.67.
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In a classical description of two-channel interferometry, the electromagnetic field is repre-
sented by a two-component complex veatct («;,a5), wherea; anda, are the amplitudes of
the fields in the two channels. The interferometer effectd 2 Wansformation

ain*> o= wa,in’ (107)

where

u
w=( o uv*), with |u|?+v|?=1, (108
is a U2) matrix. For example, a beam splitter effects @transformation wittu= e'#r cosé and
v=e'%eising where ¢, is the phase shift due to transmissiaf is the phase shift due to
reflection, and co8 is the amplitude transmissivity of the beam spliftek. lossless two-path
interferometer, such as a Mach—Zehnder interferometer, is also described (Y @madsforma-
tion; in effect a lossless two-path interferometer is equivalent to a number-conserving beam
splitter.

In quantum mechanics, a closest-to-classical two-channel field is a two-component coherent
state of a two-dimensional harmonic oscillator

|@)=l(as,az))=es%i~ L tiemats o3|, (109

where|0) is the harmonic oscillator ground state ampjandaj are harmonic oscillator raising
operators. The raising operators transform uneer U(2) according to the equation

aj—U(w)a]UT(w)=ua]-v*a],
) ) (110
al—U(w)alUT(w)=u*al+val,

from which it follows thath(w)|a>=|wa) and that the transformation of a coherent input is
given by

la™—]a®)=|wa™). (112

These relationships express the correspondence between classical and quantal coherent states.
More importantly, they show that an interferometer transforms any input state by dyhap

—U(w)|¢). An arbitrary input statéy) is a Superpositio ;Cjym|jm) of basis states defined in
a Schwinger representation by
(@)@
lim)=— .
V(+m)(j—m)!
Such states are identified with fields having a fixed numbgrp2photons; an input statgm) is

one withj+m photons in channel one arjd-m in channel two. Thus the transformation of an
arbitrary state is expressed in terms of (JMWigner functions

|0), m=—j,....+]. (112

0<w>:|w>ﬁ|¢'>=0<w>|w>=j§ncjmljn>DLm<w), weSUQ). (113

It is interesting to note that a minimal uncertainty state entering channel one
i
|(,0))=e1~"21|0), (114

is a coherent state of the Heisenberg—Weyl group, whereas the state
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U(w)|jm=]) (115

is a coherent state of the grougd), according to the generalized definition of coherent states by
Perelomov and othefé.Thus a state emerging from a quantum interferometer when the input is
the statg(«,0)) is a combined Heisenberg—Weyl{2) coherent state

lo(@,0))=0(w)e™i~<"21|0). (116)

Some of the interesting questions in quantum interferometry concern the measurement of
phase shifts of specially prepared quantum input states. Consider, for example, the phase shift
a;—e g, ay—a;, (117
of a classical input. With the understanding that only relative phase shifts of the two components
(@q,a,) are measured, such a phase shift is equivalent to

—i62
011,

a,—e a,—e ", (118

Thus the equivalent transformations of quantum mechanical states are generated by

+

al—e 192!, al

e "%l al—e?a). (119

It is then seen that the corresponding transformdtion) —e™"™?|jm) of an SU?2) weight state is

an overall phase change and undetectable. However, the transformation becomes detectable in a
symmetric quantum interferometer in which the beams pass through beam splitters immediately
before and immediately after they are phase shifted. If the first beam splitter effects(an SU

transformatiore ™ Vx™2 and the second reverses the transformation of the first, then the net result
of the quantum interferometer is a detectable transformation in which

[im)— e ez B2 jm) =&~ 1% jm) = 3 |jn) dh( 6). (120
n

In such an interferometer, a minimal uncertainty input,0)) is transformed to an output
|(a cos@l2),a sin(6/2))). Thus, the ratio tam{2) of the output amplitudes provides a measure of
0, if only intensities are measured it provides a measuré wiodulo 77. Measurements of phase
shifts can also be made with other input states and it is of interest to consider choices with the
greatest potential for accuracy.

The potential accuracy of a phase shift measurement is given by the width of the distribution
function

No()=I(p()]e 1) |>=|(yle "t~ D). (120
It follows thatNy(¢)=P(¢— 6) where
P(6)=|(sle” ). (122
For example, ifi¢) is the highest weight staigm=j) thenP(6) is given by Eq.(23),
P1(0)=|d},(0)[>=exd —j 6%/2]. (123

On the other hand, ify) is the statdj m=0), thenP(#) has the asymptotic expression given by
Eq. (58),

P,(0)=|dby 6)|2~]3o(j )| (124
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P(®)

FIG. 12. The distribution functions given by Eq423), (124), and(127) for j=20.

Thus, in spite of the fact that the highest weight st3je¢ is a minimal uncertainty state, the
variance in6 when the input state i§j) is proportional to 1{j, whereas for dj m=0) input

state, it is proportional to {1/ This can be understood as follows. The density distribution of a
spherical harmonic|Y“(0,<p)|2 is concentrated about th#=0 pole whereas the density
|Yj0(6,¢)|? is spread uniformly about thé= /2 equatorial circumference. Thus, the variance in

0 can be much smaller for the latter distribution without violation of the uncertainty principle. This
raises the question as to whether or not there might exist states with even less uncertainty relative

to theJ, orientation than the sta{¢0). One candidate is the so-called @Uphase staté§*
j .
ligy=(2j+1)"*? EJ_ e ly;ip), (125
el

where|y;ju) is an eigenstate dl‘y with eigenvalueu. Putting| ) equal to|j ¢) in Eq.(122) gives

2

Ps(6)=|(jgle 1] o)|?= (2] +1) 2 —(2j+1)"2xi(0)2 (126

2 ei,u,t‘}
M

wherey; is the well-known character of the $2J irrep of angular momenturp. Thus,

sirP[(2j+1)6/2]

Pl = G zsivr o] (127

The functionP5 is also familiar in diffraction theory. The variance ef for this function is
proportional to 1/{+0.5).

The distribution functiorP( ) is shown in Fig. 12 for each of the three input staf¢s, |j0),
and|j#). The figure shows that the phase state andntheO state gives much more accurate
measurements than the highest weight state. The down side is that these states are much more
difficult to prepare and measure than a coherent mixturenef] minimal uncertainty states.
(Another candidate for improving the estimation of phase is the so-called intelligent‘stetigh
is also difficult to prepare.
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The advantage of usingim=0) or SU?2) phase states ovdfm=j) states for precision
measurements is an example of the greater potential for acquiring or transmitting information by
quantal states than is possible with classical states. A highest weightjsate a state with all
photons in channel one. A classical-like coherent state

|(@,0))= e~ 210}, (128
is a superposition of many highest weight states:
azj

V!

The distribution function for a coherent state is given by

I(cu,0)>=e"“'2’22j lij)- (129

((,0)le""](a,0))[2=|((@,0)|(a cog 0/2),a sin(6/2)))|2=e~l*1eos2)  (130)

Thus, if |«|? is set equal to the average number of photorjs,tBen asj—o this distribution
function approaches the value €xj¢%/2] that it has for the number stajgj) as one would
expect.

In contrast, the statg m=0) is unlike any classical state. In quantum mechanics it is a state

B CHEEN
|JO>=J-—,|0>, (131
having an equal number of photons in each channel. Whereas the preparation of such a state has
not been performed, a compromise state is the coherent linear superposition of such statés given

by a two-mode squeezed coherent state

©

ef@ia-212)|0) =sech8S) (tanhg)! |j m=0). (132
=0

This state produces the desiredj}/scaling of the phase uncertaiftyfor the appropriately
weighted average value ¢f However, apart from the problems of producing such a squeezed
state, it is also noted that the distributionjofalues is heavily weighted in favor of loywvalues.
Thus, it is doubtful that much could be gained by the use of such squeezed®states.

One might suppose that a classical-like input

|(0[1a,)>=eaaifa*aleaazfa*a2|o>7 (133)

with equal amplitudes in each of the two ports might have some advantages. Such a state corre-
sponds to an equal distribution of photon numbers in each port with a relatively narrow spread
about some mean value. However, it follows from Etl1) that

(@)= 9™ |(v2 a,0). (134)

Hence

P(6)=|{(a,a)|e 1 ®|(a,a))|2=|((vV2 ,0) e *|(v2 a,0)) 2, (135

and the variance is precisely the same as for the input Kte?ex,0)). It should be noted that,
whereas the statfa,«)) can be obtained by an $8) rotation of the statd(v2 «,0)), it is
impossible to rotate a highest weight sthjte) into the statdjm=0).

The optimization of the inputs to an interferometer in order to yield the most precise phase
shift information possible with a limited number of photons is important; e.g., for the detection of
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gravitational waved! Caves has suggested injecting a standard coherent state into one channel
and a squeezed vacuum state into the other. Another suggestion is to put a squeezed input into one
channel and an antisqueezed input into the oth@learly an expansion of such inputs in an
SU(2) basis will make it possible to analyze the precisions obtainable with such inputs in the large
photon number limit using the asymptotic &) Wigner functions given in this paper.

B. Three-channel interferometry

Similar considerations apply to a three-channel interferometer which transforms input states
by a U3) transformation

T(Q):[y)—T()|¥), geU®). (136

The transformation is analogous to th€2Utransformation discussed in the preceding section, but
with T(g) a unitary representation of a matixe U(3). The U3) transformation can be factor-

ized into a sequence of $2) transformations and an overall phase factor; physically, this corre-
sponds to a realization of a three-channel interferometer as a combination of two-channel devices
(phase shifters, mirrors and beam splitters

The infinitesimal generators of the unitary transformatiiy) are given in a generalized
Schwinger representation in E(f.8). In such a representation, basis states for afBgldrep of
highest weight\,0) are weight statels’)=|v,v,v3); they can be regarded as triplet Fock number
states withy; photons in channel of the interferometer and fixed total photon number.

Many of the results for two-channel interferometry, discussed in the preceding section, carry
forward to the three-channel case in an intuitively clear manner. For instance, the state in which all
photons enter through channel one is the minimal uncertajhighest weight state |(\))
=|X,0,0). For analysis of experiments with such an input state, thegSWigner functionD$}),,
and its asymptotic limit is relevant. On the other hand, the Wigner functions for central weights
are relevant for balanced input states.

Whereas the two-channel interferometer is suited to the measurement of phase difference
between two channels of propagation, it may be desirable to measure multiple phase shifts simul-
taneously, e.g., because the phase shifts are transient or the mean particle flux of the source is
limited. Moreover, the most efficient use of photons for precision measurement is to divide them
up and measure relative phases between multiple pAtfise SUN) interferometer is ideally
suited for this purpose. The $8) interferometer allows the measurement of two phase shifts
simultaneously.

D’Ariano and Pari§ have shown that much improved accuracy is already obtained with an
easily produced coherent state input by suitably dividing the input into the many channels of a
multichannel interferometer. They show that with a mean numlzdrphotons, the variance of the
phase shift estimation scales A®<1/N?\ for an N-channel interferometer. In contrast, if the
fixed input of A\ photons were to be split betweé—1 two-channel interferometers, then the
variance of each would be proportional td{ 1)/\ and, with the estimate df given by the mean
of the 6, obtained in the two-channel interferometers, the variance would be independint of
(assuming the spread of measured phase shifts is small compared to the range)0Tthug,
nothing is gained by splitting th® photons over many two-channel interferometers but a huge
gain results from appropriate use of a multichannel interferometer.

Still further gains can, in principle, be achieved by use both of exotic inputs and multichannel
interferometers. The balanced input state is a preferred input state for phase-shift determination
but it is hard to generate. Also, it is just one of many inputs which can, in principle, improve the
precision of phase-shift estimation. The generalization t¢350f the SU?2) phase state consid-
ered in the preceding secti8mould also yield superior scaling laws for the phase-shift estimation
in terms of\. The precision of two simultaneously measured phase shifts is rigorously expressed
in terms of the covariance matrix for the two phases. Thi22matrix includes the variance for
each phase and the covariance between the two phases. Detailed analyses of the results achievable
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with various techniques and three-channel inputs is in principle possible by expanding the inputs
in an SU3) basis and using the asymptotic Wigner functions to infer variances as done for
two-channel interferometers in Sec. VA.

VI. CONCLUDING REMARKS

~In this paper, we have derived several previously unknown asymptotic limits @) SUgner
d!, functions which converge rapidly gs-« and are shown to be accurate over a wide range of
their arguments. We have also shown how(®WVigner functions for multiplicity-free irreps of
highest weight\,0) can be factored into products of &) Wigner functions so that their limits
can be inferred from those of $2). This kind of inference is not limited to SB) and can be
generalized to SWN) irreps of highest weight\,0,..) for N>3.

Explicit limiting expressions have been given for some representative classes (8f SU
Wigner functions. In particular, we have considered Wigner functions for states whose weights are
either extremal or central in the terminology of Sec. IV. Other expressions can be derived by
variations of the methods given. For example, useful asymptoti@SWigner functions can be
determined for which one weight is extremal and the other is close to a side. Depending on the
domains of the initial and final states of a Wigner function, it will often happen that the expres-
sions are much simpler in some other set of §Euler angles than those given. This is a simple
reflection of the fact that a given $8) transformation may be simple when expressed as one
sequence of S(2) transformations but seemingly complex when expressed in some other way.
Thus, by choosing the most appropriate sequence the number of summations over products of
SU(2) Wigner functions can be minimized.

Asymptotic limits of Wigner functions are of interest for many reasons. In situations where
they are valid, they can facilitate computations and provide quick estimates of the behaviors of
quantum systems. In this way they give physical insight into the ways quantal systems approach
classical limits. This has been illustrated in this paper by using the limits to estimate variances in
phase shift measurements by quantum interferometry and to determine the ways they scale with
the number of photons. Asymptotic limits may also be important in quantum information theory
for identifying quantum states that behave in very nonclassical and potentially useful ways.

Our initial hope was to derive asymptotic expressions for the Wigner functions of generic
SU(3) irreps. However, while we did succeed in deriving some expressions, they proved under
numerical investigation to be accurate only over narrow ranges of their arguments. Thus, while of
some mathematical interest, they are of limited practical value. Clearly further investigation is
needed before any results are presented.
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