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Asymptotic limits are given for the SU~2! WignerD mn
j functions asj→` for three

domains ofm and n. Similar asymptotic limits are given for the SU~3! Wigner
functions of an irrep with highest weight~l,0! asl→`. The results are shown to
be relevant to the analysis of experiments with quantum interferometers. ©2001
American Institute of Physics.@DOI: 10.1063/1.1358305#

I. INTRODUCTION

The asymptotic properties of Wigner functions provide a classical interpretation of
functions. This is of interest, for example, for the design and interpretation of quantum int
ometer experiments. It is known that a passive optical element which linearly transforms two
modes~beams! into two output modes, is represented by a U~2! transformation.1–4 Similarly, a
three-mode passive element is represented by a U~3! transformation.5,6 Typically, the input modes
in multimode interferometry are minimal uncertainty wave packets containing large ph
numbers;7 as a result, the relevant U~2! and U~3! transformations are close to correspondi
classical limits.

We show that different asymptotic limits correspond to different classical situations and
group~and Lie algebra! contractions. For example, in one limit, the group SU~2! contracts to the
Euclidean group E~2! and, in another, it contracts to the Heisenberg–Weyl group HW~2! of the
two-dimensional harmonic oscillator. Thus, the SU~2! Wigner functions, in the correspondin
limits, approach those of E~2! and HW~2!, respectively. Similar contractions apply to SU~3!.

Some asymptotic limits of the SU~2! Wigner functions are known.8–14 Others can be inferred
from known limits of the Jacobi polynomials$Pn

(a,b)% to which the reduced SU~2! Wigner d
functions are related.15 In particular, the following limits can be found in Szego¨’s book8 and
elsewhere:

Hn~x!5n! lim
l→`

l2n/2Pn
(l)~x/l!, ~1!

Ln
(a)~x!5 lim

b→`

Pn
(a,b)~122x/b!, ~2!

Ja~x!5 lim
n→`

S x

2nD a

Pn
(a,b)~cos~x/n!!, ~3!

where Pn
(l) is an ultraspherical polynomial,Hn is a Hermite polynomial,Ln

(a) is a Laguerre
polynomial, andJa is a Bessel function. These classical limits hold for any finite value of
variablex. Hence, they give the asymptotic limits of the SU~2! d functions for values of their

a!Current address: Faculte´ Saint-Jean, University of Alberta, 8406 rue Marie-Anne Gaboury, Edmonton, AB T6C 4
Canada.
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arguments close to 0 orp/2. For the applications we have in mind, the asymptotic behavior od
functions is required over most of the range of its argument. This is not given by the cla
limits of Eqs.~1!–~3!. For example, it would be wrong to conclude from Eq.~1! that the value of
Pn

(l)(x) approaches the valueln/2Hn(lx)/n! as l→`.
An example of the kind of classical limit we seek has been derived by Arecchiet al.11 who

show that, for finitel 1m, the valuesd0m
l (b) of thed functions that are proportional to spheric

harmonics become proportional toul 1m(Al (b2p/2)) asl→`, whereun is a harmonic oscillator
wave function. It is shown in this paper, that asymptotic expressions of this kind can be ext
to arbitrarydm,6( j 2n)

j for finite m andn. We also give asymptotic expressions fordmn
j that apply

whenm andn are both finite and other expressions that apply whenj 6m and j 6n are both finite.
We also show by numerical examples that the limits are approached rapidly with increasingj and
that, between them, the three sets of expressions given cover the range of possiblem andn values
for a given set ofdmn

j functions.
The asymptotic expressions derived for SU~2! in Sec. II are applied, in Sec. III, to give

corresponding limits for the SU~3! Wigner functions for an irrep of highest weight~l,0!.
Applications to quantum interferometers are considered briefly in the concluding sectio

II. LIMITS OF SU„2… WIGNER FUNCTIONS

The complex extension of the SU~2! Lie algebra is spanned by 232 complex matrices
$J0 ,J1 ,J2% which satisfy the commutation relations

@J0 ,J6#56J6 , @J1 ,J2#52J0 . ~4!

We consider an irrep in which these elements are represented by operators$Ĵ0 ,Ĵ1 ,Ĵ2% which act,
in the usual way, on a (2j 11)-dimensional Hilbert space spanned by vectors$u jm&; m
52 j ,...,1 j %:

Ĵ0u jm&5mu jm&,
~5!

Ĵ6u jm&5A~ j 7m!~ j 6m11! u jm61&.

Wigner functions for SU~2! are defined by

D mn
j ~a,b,g!5e2 imadmn

j ~b!e2 ing, ~6!

where

dmn
j ~b!5^ jmue2 ib Ĵyu jn&, ~7!

with Ĵy52 1
2 i ( Ĵ12 Ĵ2), is the so-called reduced Wigner function. We consider asymptotic

pressions fordmn
j (b) as j→`, in three situations:~i! whenn' j andm2! j 2, ~ii ! whenm'n and

m2' j 2, and~iii ! whenm'n andm2! j 2.

A. Harmonic oscillator limits

For n5 j , the reduced Wigner function,dmn
j , is given by

dm j
j ~b!5A ~2 j !!

~ j 1m!! ~ j 2m!!
~cosb/2! j 1m~sinb/2! j 2m. ~8!

The derivative of this function vanishes whenb5bm , wherebm is the semiclassical angle fo
which cosbm5m/j. For this angle
 18 Oct 2001 to 216.211.76.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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cos~bm /2!5Aj 1m

2 j
, sin~bm /2!5Aj 2m

2 j
, ~9!

and the substitutions

b2bm52f, j 1m5s, j 2m5d, ~10!

give

~cosb/2! j 1m5~s/2j !s/2@cosf2Ad/s sinf#s,
~11!

~sinb/2! j 1m5~d/2j !d/2@cosf1As/d sinf#d.

Defining the two functions

X~f!5cosf2Ad

s
sinf, Y~f!5cosf1As

d
sinf, ~12!

then gives

dm j
j ~b!5A~2 j !!

s!d!

ssdd

~2 j !2 j X~f!s Y~f!d. ~13!

The functionsX(f) andY(f) satisfy

dX~f!

df
52Ad

s
Y~f!,

dY~f!

df
5As

d
X~f!, ~14!

so that

f ~f!5X~f!sY~f!d ~15!

satisfies the equation

d f

df
5Asd

X22Y2

XY
f . ~16!

For small values off,

Asd~X22Y2!'24 j sinf cosf, XY'cos2 f. ~17!

Thus

d f

df
'24 j

sinf

cosf
f ~f!, ~18!

with solution

X~f!s Y~f!d5 f ~f!'~cosf!4 j . ~19!

Whens5 j 1m andd5 j 2m are both large, the asymptotic expression for the factorials16

z!→A2p

z
e2zzz11, ~20!
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gives

A~2 j !!

s!d!

ssdd

~2 j !2 j → S j

psdD
1/4

. ~21!

Combining this expression with Eq.~19! gives the asymptotic expression, for large values oj
1m and j 2m

dm j
j ~b!5~21! j 2mdjm

j ~b!→S 1

Aj psinbm
D 1/2

@cos~~b2bm!/2!#4 j

→S 1

Aj psinbm
D 1/2

exp@2 j ~b2bm!2/2#. ~22!

This asymptotic expression is compared with the exact result for a range of values ofm for
j 520 in Fig. 1. It is seen to be remarkably accurate even form close to j . It breaks down for
m56 j but then we have

dj j
j ~b!5@cos~b/2!#2 j→exp@2 j b2/4#,

~23!
d2 j j

j ~b!5@sin~b/2!#2 j→exp@2 j ~b2p!2/4#.

These results have a simple classical interpretation. A state with angular momentumj andz
componentm5 j is a minimal uncertainty state. It has a density functionuc j j (u,w)u2 that is
independent ofw and concentrated about theu50 direction~thez axis!. The rate of falloff of the
density with increasing angle is indicated by

^ j j ue2 ib Ĵyu j j &5dj j
j ~b!, ~24!

which, as seen from Eq.~23!, decreases rapidly with increasingb, for large values ofj . This is
what one would expect from classical mechanics where the angular momentum vector is d
along thez axis whenm5 j . By the same token, a classical angular-momentum vector
z-componentm makes an anglebm with the z axis with cosbm5m/j. Thus, the rotated stat

e2 ibmĴyu j j & is expected to have maximum overlap with the stateu jm& and conversely the overla

FIG. 1. The reduced Wigner functiondm j
j (xp) for j 520 and various values ofm. Exact values are shown as thi

continuous lines and asymptotic values, given by Eq.~22!, as broken heavy lines.
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^ jmue2 ib Ĵyu j j &5dm j
j ~b! ~25!

is expected to peak at a value ofb equal tobm , as indeed it does.
A significant property of the above asymptotic limits are that they are all simple harm

oscillator coherent states; i.e., harmonic oscillator ground-state wave functions centered abobm .
We now show that, in thej→` limit, the otherdmn

j functions, form small andn' j , approach
excited harmonic oscillator coherent states.

Consider first thed0n
l function, which for integer values ofl , is proportional to a spherica

harmonic

d0n
l ~u!5~21!nA 4p

2l 11
Yln~u,0!. ~26!

For l→`, we have, from Eq.~22!, the limit

d0l
l ~u!→S 1

Alp
D 1/2

exp@2 l ~u2p/2!2/2#; ~27!

which is a harmonic oscillator ground-state wave function centered aboutu5p/2. Letn5 l 2n, so
that n! l whenn' l . Thus, if c ln denotes the function

c ln~u!5~21!nd0,l 2n
l ~u1p/2!5~21! lA 4p

2l 11
Yl ,l 2n~u1p/2,0!, ~28!

then, in thel→` limit,

c l0~u!→S 1

Alp
D 1/2

e2 lu2/25 l 21/4u0~Al u!, ~29!

whereu0 is the harmonic oscillator ground-state wave function.
For l @n and l→`, the limits

Ĵ1Yl ,l 2n5An~2l 2n11! Yl ,l 2n11→A2ln Yl ,l 2n11 ,
~30!

Ĵ2Yl ,l 2n5A~2l 2n!~n11! Yl ,l 2n21→A2l ~n11! Yl ,l 2n21 ,

imply that the angular momentum raising and lowering operators contract to harmonic osc
lowering and raising operators, respectively. From the explicit expression for the actions of tĴ6

operators on spherical harmonic oscillators, we also have

@ Ĵ6Yl ,l 2n#~u1p/2,0!5F ~ l 2n!tanu6
d

duGYl ,l 2n~u1p/2,0! ~31!

so that, for smallu and l @n,

@ Ĵ6Yl ,l 2n#~u1p/2,0!→S lu6
d

du DYl ,l 2n~u1p/2,0!. ~32!

It follows that, in thel→` limit,

c l ,n11~u!5
1

A2l ~n11!
S lu2

d

du Dc ln~u!5
1

A~n11!

1

&
S Al u2

1

Al

d

du D c ln~u!, ~33!
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thereby providing a recursion relation for thec ln functions. Sincec l0 is a harmonic oscillator
ground-state wave function, the recursion relation is easily solved to give

c ln~u!→ l 21/4un~Al u!, ~34!

whereun is the harmonic oscillator wave function

un~x!5S 1

Ap2nn!
D 1/2

Hn~x! e2x2/2 ~35!

with Hn a Hermite polynomial. Thus, we obtain the asymptotic limit of the Wigner function
n! l and l→`,

d0,l 2n
l ~b!→~21!nl 21/4un~Al ~b2p/2!!, ~36!

and the corresponding asymptotic expression for a spherical harmonic

Yl ,m~u,0!5~21!mA2l 11

4p
d0,m

l ~u!→~21! lA2l 11

4p
l 21/4ul 2m~Al ~u2p/2!!, ~37!

whenm' l . The latter expression accords with the result obtained by Arecchiet al.11 after cor-
rection for what are presumed to be typographical errors.

The asymptotic expression forYlm is compared with exactly computed spherical harmon
for l 520 andm520, 18, and 16, in Fig. 2. Comparisons forl 520 andm519, 17, and 15 are

FIG. 2. Spherical harmonicsY20,m(u,w) for m520, 18, and 16 plotted as a function ofu for w50. Exact values are shown
as fine continuous lines and asymptotic values, given by Eq.~37!, as heavy dashed lines.

FIG. 3. Spherical harmonicsY20,m(u,w) for m519, 17, and 15 plotted as a function ofu for w50. Exact values are shown
as fine continuous lines and asymptotic values, given by Eq.~37!, as heavy dashed lines.
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shown in Fig. 3. Even for finite values ofl the agreement is excellent foru nearp/2. It deteriorates
asu approaches 0 orp. This can be attributed in part to the fact that the volume element for
spherical harmonics is sinu du whereas the corresponding harmonic oscillator wave functions
normalized without the factor sinu. Thus, one expects better agreement if the asymptotic exp
sions are renormalized by a factor 1/Asinu. This indeed turns out to be the case. Figure 4 sho
that, with this adjustment, quite good agreement can be obtained even form512.

A similar analysis can be applied to otherd functions. Forl @n and j→`, the equations

Ĵ1dm, j 2n
j 5An~2 j 2n11! dm, j 2n11

j →A2 j n dm, j 2n11
j ,

~38!
Ĵ2dm, j 2n

j 5A~2 j 2n!~n11! dm, j 2n21
j →A2 j ~n11! dm, j 2n21

j

imply that Ĵ6 can again be interpreted as harmonic oscillator raising and lowering oper
Starting with the shifted harmonic oscillator wave functions

dm j
j ~b!→S 1

Aj p sinbm
D 1/2

e2 j (b2bm)2/25S 1

Aj sinbm
D 1/2

u0~Aj ~b2bm!!, ~39!

we find, for small values ofn that

dm, j 2n
j ~b!→~21!nS 1

Aj sinbm
D 1/2

un~Aj ~b2bm!! ~40!

as j→`, and

dj 2n,m
j ~b!→~21! j 2mS 1

Aj sinbm
D 1/2

un~Aj ~b2bm!!. ~41!

Similarly, from the symmetry properties of thed-functions,

dm,n2 j
j ~b!→~21! j 1mS 1

Aj sinbm
D 1/2

un~Aj ~b2bm!! ~42!

and

dn2 j ,m
j ~b!→~21!nS 1

Aj sinbm
D 1/2

un~Aj ~b2bm!!. ~43!

FIG. 4. The spherical harmonicY20,12(u,w). Exact values are shown as a fine continuous line and asymptotic values,
by Eq. ~37! multiplied by a factor 1/Asinu, are shown as a heavy dashed line.
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Figure 5 shows the functiond17,3
20 compared to its asymptotic harmonic oscillator limit. Aga

further improvement in the limit can be obtained by dividing the asymptotic expression byAsinb.

B. The SU „2…\HW„2… contraction

The above harmonic oscillator limits fordmn
j apply whenm is small andn is close to6 j ~or

vice versa!. They are at their best, for finite values ofj , when b is close to the appropriate
semiclassical angle and deteriorate asb approaches 0 orp. When m'n, there are other
asymptotic limits which derive from contractions of the SU~2! Lie algebra.

We consider here a HW~2! contraction of SU~2! which follows from the
Holstein–Primakoff17 representation in which the angular momenta are realized as the oper

Ĵ05 j 2n̂, Ĵ15A2 j 2n̂ a, Ĵ25a†A2 j 2n̂; ~44!

a† anda are the raising and lowering operators of a simple harmonic oscillator with commut
relation

@a,a†#5I , ~45!

andn̂5a†a is the number operator. In this representation, a stateu jm& becomes a simple harmoni
oscillator stateum& havingm5 j 2m quanta, for whichn̂um&5mum&. It follows that, when acting
on states for whichm is close to some valuem̄@2 j , the angular momentum operators approa
the asymptotic forms

Ĵ0→ j I 2a†a, Ĵ1→Aj 1m̄ a, Ĵ2→Aj 1m̄ a†. ~46!

Likewise Ĵy→ 1
2 iAj 1m̄ (a†2a) and, form andn both close tom̄5 1

2 (m1n),

dmn
j ~b!→^ j 2mue~1/2! bAj 1m̄ (a†2a)u j 2n&. ~47!

FIG. 5. The Wigner functiond17,3
20 compared to its asymptotic harmonic oscillator limit. Exact values are shown as a

continuous line and asymptotic values, given by Eq.~41!, as a dashed line.
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The last expression, derived from a contraction limit of the SU~2! Lie algebra, is at its best fo
small values ofb and form andn far from 2 j . A similar expression holds form andn far from
1 j .

From the identity

ea(a†2a)5eaa†
e2a2/2e2aa, ~48!

it follows that

^muea(a†2a)un&5
1

Am!n!
^0uameaa†

e2aa~a†!nu0&e2a2/2

5
1

Am!n!
^0u~a1a!m~a†2a!nu0&e2a2/2

5An!

m! (p
S m

p D ~2a2!n2p

~n2p!!
am2ne2a2/2. ~49!

Now recall16 that, form2n.21,

(
p

S m
p D ~2a2!n2p

~n2p!!
5Ln

(m2n)~a2!, ~50!

whereLn
(m2n) is a generalized Laguerre polynomial. Thus, form2n.21, we obtain the identity

^muea(a†2a)un&5An!

m!
am2n Ln

(m2n)~a2! e2a2/2 ~51!

and, witha5 1
2 bAj 1(m1n)/2, we obtain the asymptotic expression

dmn
j ~b!→A ~ j 2n!!

~ j 2m!!
~ajmnb!n2mL j 2n

(n2m)~ajmn
2 b2! e2ajmn

2 b2/2, for m<n, ~52!

where ajmn5 1
2 A(2 j 1m1n)/2. This expression is valid for small values ofb and j 1m̄@n

2m. For m>n and j 1m̄@m2n, the identitydmn
j (b)5dnm

j (2b) gives

dmn
j ~b!→A~ j 2m!!

~ j 2n!!
~2ajmnb!m2nL j 2m

(m2n)~ajmn
2 b2! e2ajmn

2 b2/2, for m>n. ~53!

The asymptotic expression~53! for d18,15
20 is compared with the exactly computed function in F

6.
Other expressions are obtained from the symmetry properties of thedmn

j functions. For ex-
ample, an asymptotic expression form close to2 j andn close to1 j is obtained from the identity

dmn
j ~b!5~21! j 2md2mn

j ~b1p!. ~54!

These limits are approached for the largest range ofb whenm andn are similar and close to
6 j . This is because the SU~2!→HW~2! contraction is valid to within some specified accura
over the largest span of$u jm&% states whenumu is close toj .
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C. The SU„2…\E„2… contraction limit

For m close ton and both far from6 j , a more appropriate contraction is the one in wh
SU~2!→E~2!, where E~2! is the Euclidean group of transformations of the two-dimensional pla
This limit is obtained from the observation that, asj 22m2→`, the right-hand sides of Eq.~5!
approach values given by

Ĵ0u jm&5m u jm&,
~55!

Ĵ6u jm&→Aj 22m2 u jm61&5 j sinbm u jm61&.

With cosbm̄5m̄/j, Aj 22m̄25 j sinbm̄, and, for values ofm close tom̄, the SU~2! states are
represented, in thej 22m̄2→` limit, as functions on the circle, i.e.,u jm&→cm with

cm~u!5
eimu

A2p
, ~56!

and the angular momentum operators are represented

Ĵ0→2 i
d

du
, Ĵ6→ j sinbm̄e6 iu. ~57!

It follows that Ĵy→ j sinbm̄sinu and, form andn both close tom̄5 1
2 (m1n),

dmn
j ~b!→ 1

2p E
0

2p

e2 i (m2n)u e2 ib j sin bm̄ sin u du5~21!m2nJm2n~ j b sinbm̄!, ~58!

whereJm is a Bessel function and we have used a known16,10 integral expression forJm . This
expression is a generalization to finite values of thed-function’s argument of the known
asymptotic limit, for infinitesimalb/ j ,12,13

lim
j→`

dmn
j ~b/ j !5~21!m2nJm2n~b!. ~59!

FIG. 6. The reduced Wigner functiond18,15
20 (xp). Exact values are shown as a fine continuous line and asymptotic va

given by Eq.~53!, as a dashed line.
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The expressions given by Eq.~57! are the limits of a general coherent state representatio
the SU~2! algebra carried by functions on the circle. Note, however, that since it is derived
a contraction of the Lie algebra, it is only valid locally. Thus, the asymptotic limit of Eq.~58! is
only expected to be good for relatively small values ofb andm2n.

The asymptotic expression~58! for the reduced Wigner functiond6,2
20 is compared, for 0<b

<p/2, with the exact function in Fig. 7. It is seen to be an excellent approximation for s
values of its argument. It is appropriate to restrict the use of Eq.~58! to 0<b<p/2 because, for
b in the rangep/2<b<p, a better limit is obtained by use of the identity

dmn
j ~b!5~21! j 1mdm,2n

j ~p2b!, ~60!

which, for p/2<b<p, leads to the asymptotic expression

dmn
j ~b!→~21! j 1mJm1n~ j ~b2p!sinb (m2n)/2!. ~61!

Comparison of the exact expression with Eq.~58! for b in the range 0<b<p/2 and with~61! for
p/2<b<p is shown in Fig. 7.

For small values ofb it turns out that a remarkable improvement in accuracy is obtained
the ad hoc replacementj→ j 11/2 in the argument of the Bessel function of the asympto
expression. This replacement has also been found by other authors to increase numerical a
to first order, it can be regarded as a substitution ofj by Aj ( j 11), which is the appropriate
classical value of the magnitude of the angular momentum. The modified estimate is com
with the exact expression ford6,2

20(xp) in Fig. 8.
The above results have a natural interpretation in terms of an SU~2!→E~2! contraction. If we

define

x5
1

2 j sinbm̄
~J11J2!, y52

i

2 j sinbm̄
~J12J2!, Jz5J0 , ~62!

we obtain the commutation relations

@Jz ,x#5 iy, @Jz ,y#52 ix, @x,y#5
i

j 2 sin2 bm̄
Jz→0, ~63!

FIG. 7. The reduced Wigner functiond6,2
20(xp). Exact values are shown as a fine continuous line and asymptotic valu

a dashed heavy line. For 0,x,0.5 the asymptotic values are given by Eq.~58! and for 0.5,x,1 they are given by Eq.
~61!.
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as j sinbm̄→`. They are the commutation relations of the infinitesimal generators of the Eucli
group in two dimensions. Moreover, the SU~2! representation with highest weightj contracts to a
representation of the Euclidean group E~2! in which

x→cosu, y→sinu, Jz→2 i
d

du
. ~64!

This contraction limit makes sense geometrically if one considers the manifold of S~2!
coherent states in the Hilbert space generated by applying all SU~2! transformations to a fixed
stateu jm&. This manifold has the geometry of a sphere and one knows that small neighbor
on a sphere look locally like neighborhoods of a two-dimensional Euclidean plane.

D. Summary of SU „2… Wigner function limits in a U „2… basis

In summarizing the limits fordmn
j , it is useful to characterize the value ofm as being central

if m'0 and extremal ifm'6 j . The various asymptotic limits fordmn
j are then at their best in th

following situations:~i! Harmonic oscillator limits; whenm is central andn is extremal,~ii !
HW~2! contraction limits; whenm andn are both extremal, and~iii ! E~2! contraction limits; when
m andn are both central.

For application of the above results to SU~3!, the results are most usefully expressed in a U~2!
weight basis in which a stateu jm& is identified with the U~2! weight stateusd& with s5 j 1m and
d5 j 2m. A reduced SU~2! Wigner function is then expressed

dmn
j ~b!5^s1d1ubus2d2&, ~65!

with s15 j 1m, d15 j 2m, s25 j 1n, andd25 j 2n. The above asymptotic limits are summariz
as follows.

1. Harmonic oscillator limits

If m is central thens5 j 1m@0 andd5 j 2m@0 in the j→` limit. Equations~40! and~41!
are then expressed

^sdubu2 j 2n,n&5~21!n2d^2 j 2n,nubusd&→ds1d,2j ~21!n S j

sdD
1/4

un~Aj ~b2bsd!!, ~66!

where j 5(s1d)/2 and

FIG. 8. The reduced Wigner functiond6,2
20(xp). Exact values are shown as a fine continuous line and asymptotic valu

a dashed line. The asymptotic expression in~a! is given by Eq.~58! and in ~b! it is given by ~58! with j replaced byj
11/2.
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cosbsd5
s2d

s1d
⇒ sinbsd5Asd

j
, ~67!

andun is given by Eq.~35!. This limit is valid for small values ofn.

2. HW(2) contraction limits

If m andn are both close toj , thens1@d1 ands2@d2 . Substituting the expression

ajmn
2 5 1

8 ~2 j 1m1n!5 1
8 ~s11s2! ~68!

for ajmn
2 into Eqs.~52! and ~53! then gives, in this limit,

^s1d1ubus2d2&→ds11d1 ,s21d2
Ad2!

d1! S b

2
As11s2

2 D s22s1

Ld2

(s22s1)
~b2~s11s2!/8!e2b2(s11s2)/16

~69!

for s1<s2 and

^s1d1ubus2d2&→ds11d1 ,s21d2
Ad1!

d2! S 2
b

2
As11s2

2 D s12s2

Ld1

(s12s2)
~b2~s11s2!/8!e2b2(s11s2)/16

~70!

for s1>s2 .
If m is close to j and n is close to2 j , so thats1@d1 and s2!d2 , the identitydmn

j (b)
5(21) j 2ndm,2n

j (b1p) interchanges the coefficientss2 andd2 to give

^s1d1ubus2d2&5~21!d2^s1d1ub1pud2s2& ~71!

for which Eqs.~69! and ~70! continue to apply. Similarly, fors1!d1 ands2@d2 ,

^s1d1ubus2d2&5~21!d1^d1s1ub1pus2d2&, ~72!

and, fors1!d1 ands2!d2 , the identitydmn
j (b)5(21)m2nd2m,2n

j (b) gives

^s1d1ubus2d2&5~21!s12s2^d1s1ubud2s2&. ~73!

3. E(2) contraction limits

When m and n are both small andj is large,s1@0, d1@0, s2@0, andd2@0. Replacing
2 j sinbm̄ by A(s11s2)(d11d2) in Eq. ~58! then gives

^s1d1ubus2d2&→ds11d1 ,s21d2
~21!s12s2Js12s2

~A~s11s2!~d11d2!b/2!. ~74!

III. „l,0… SU„3… WIGNER FUNCTIONS

The complex extension of the U~3! Lie algebra is spanned by 333 matrices$Ci j % which
satisfy the commutation relations

@Ci j ,Ckl#5d jkCil 2d i l Ck j . ~75!

The SU(3),U(3) subalgebra is spanned by the subset$C112C22,C222C33,Ci j ; i 5” j %.
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A. Representations of the U „3… Lie algebra

We consider a U~3! irrep of highest weight (l,0,0) in which the$Ci j % matrices are repre
sented by operators$Ĉi j % on a Hilbert space spanned by a weight basis$un&%. The components of
a weightn[(n1 ,n2 ,n3) are the eigenvalues of theĈii operators, viz.

Ĉii un&5n i un&, i 51,2,3, ~76!

and sum to given11n21n35l. For a (l,0,0) irrep, the weight basis states are defined uniqu
to within phase factors. Such an irrep restricts to an SU~3! irrep of highest weight~l,0!.

The basis states$un&% are conveniently realized within the space of a three-dimensio
harmonic oscillator. Thus, if$ci

† ,ci ; i 51,2,3% denotes a triplet of harmonic oscillator raising a
lowering operators, the~orthonormal! weight states are

un&5
~c1

†!n1~c2
†!n2~c3

†!n3

An1!n2!n3!
u0&, n11n21n35l, ~77!

where u0& is the harmonic oscillator lowest-weight~vacuum! state, and the U~3! operators are
expressed

Ĉi j 5ai
†aj . ~78!

It follows that theiÞ j operators act on the weight states according to the equation

Ĉi j un1 ,n2 ,n3&5A~n i11!n j(
n8

dn
i8 ,n i11dn

j8 ,n j 21dn
k8 ,nk

un18 ,n28 ,n38&, ~79!

for iÞkÞ j .
The above~weight! basis reduces the SU~2!23,SU~3! subalgebra spanned by theI -spin op-

erators

Î 15Ĉ23, Î 25Ĉ32, Î 05 1
2 ~Ĉ222Ĉ33!. ~80!

The correspondingI -spin quantum numbers are identified by setting

n15l22I , n25I 1N, n35I 2N, ~81!

and writing

un&[uIN&5
~c1

†!l22I

A~l22I !!

~c2
†! I 1N~c3

†! I 2N

A~ I 1N!! ~ I 2N!!
u0&. ~82!

The action of the SU~2!23 operators is then expressed in the usual way by

Î 0uIN&5NuIN&, Î 6uIN&5A~ I 7N!~ I 6N11! uIN61&. ~83!

Similarly, the SU~2!12 and SU~2!13 subalgebras are spanned byU-spin andV-spin operators,
respectively,

Û15Ĉ12, Û25Ĉ21, Û05 1
2 ~Ĉ112Ĉ22!, ~84!

V̂15Ĉ13, V̂25Ĉ31, V̂05 1
2 ~Ĉ112Ĉ33!. ~85!

Thus, we have the identificationsun&[uIN&[uUM &[uVP& with
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n15l22I 5U1M5V1P,

n25I 1N5U2M5l22V, ~86!

n35I 2N5l22U5V2P.

It is important to note that, for a~l,0! irrep, the above weight basis becomes identical to
basis$u j IN &% constructed, for a general SU~3!.SU~2!23 irrep, by VCS methods18 and used in the
computation of SU~3! Clebsch–Gordan coefficients.19 @For a ~l,0! irrep the extra labelj in
$u j IN &} is redundant and can be dropped.# The bases are identified explicitly as follows. Fir
observe that the highest weight state of the SU~3! ~l,0! irrep is the state

uf&5
~c1

†!l

Al!
u0&. ~87!

Thus, with the observation that

~c1!l2n1~c1
†!lu0&5

l!

n1!
~c1

†!n1u0&, ~88!

we obtain the expression of the U~3!.SU~3! basis states

un&5A n1!

l!n2!n3!
~Ĉ21!

n2~Ĉ31!
n3uf&. ~89!

This basis is identical to that of VCS theory,

uIN&5A~l22I !!

l!

~Ĉ21!
I 1N~Ĉ31!

I 2N

A~ I 1N!! ~ I 2N!!
uf&, ~90!

with the relationship betweenn andIN given by Eq.~81!. It is also identical to the Gel’fand basi
$unI &% used for a~l,0! irrep in Ref. 20 withI 5 1

2 (n21n3) ~cf. appendix of Ref. 19!.

B. „l,0… Wigner functions for finite l

As shown recently,20 an SU~3! element can be expressed as a product of SU~2! subgroup
elements in the form

g~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!5R23~a1 ,b1 ,g1!R12~a2 ,b2 ,a2!R23~a3 ,b3 ,g3!. ~91!

This is a particularly convenient parametrization because, in the above basis, the matrices
SU~2!23 rotations are given by standard SU~2! Wigner functions; viz.

^I 8N8uR̂23~a,b,g!uIN&5d I 8ID N8N
I

~a,b,g! ~92!

or, in terms of weights,

^nuR̂23~a,b,g!um&5dn1 ,m1
D (n22n3)/2,(m22m3)/2

(l2n1)/2
~a,b,g!. ~93!

Similarly, for the SU~2!12 matrix elements

^muR̂12~a,b,g!um8&5dm3 ,m
38
D

(m12m2)/2,(m
182m

28)/2

(l2m3)/2
~a,b,g!. ~94!
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The expressions are simplified by writing the SU~2! Wigner functions in a U~2! basis@cf. Eq.~65!#
in which

D mn
j ~a,b,g!5^ j 1m, j 2mubu j 1n, j 2n&e2 i (ma1ng). ~95!

Then

^nuR̂23~a,b,g!um&5dn1 ,m1
^n2n3ubum2m3&e

2 i [(n22n3)a1(m22m3)g]/2,

~96!

^muR̂12~a,b,g!um8&5dm3 ,m
38
^m1m2ubum18m28&e

2 i [(m12m2)a1(m182m28)g]/2,

and

Dn,n8
(l,0)

~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!

5e2 i [(n22n3)a11(l2n1)g112(n11n182l)a21(l2n18)a31(n282n38)g3]/2

3 (
n50

nmax

ein(g12a21a3)^n2n3ub1ul2n12n,n&

3^n1 ,l2n12nub2un18 ,l2n182n&^l2n182n,nub3un28n38&, ~97!

wherenmax5Min(l2n1 ,l2n18).
Expressions for the SU~3! Wigner functions of other irreps are given in Ref. 20.

IV. „l,0… WIGNER FUNCTIONS FOR l\`

Wigner functions for an SU~3! ~l,0! irrep have a number of asymptotic expressions which
be obtained by substituting the corresponding limits for the SU~2! Wigner functions into Eq.~97!.
The appropriate limits depend on the location of the weightsn andn8 in the weight diagram. A
weight can be characterized as extremal if it is close to a vertex, or central, if it is far fro
vertex.

A. Limits of „l,0… Wigner functions for n central and n8 close to a highest weight

Whenn8 is of highest weight, i.e.,n85(l,0,0), the expression for the SU~3! Wigner function
of Eq. ~97! reduces to

Dn,(l)
(l) ~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!5e2 i [(n22n3)a11(l2n1)g112n1a2]/2

3^n2n3ub1ul2n1,0&^n1 ,l2n1ub2ul0&, ~98!

where, to simplify the notation, we have identified the weights (l)[(l,0)[(l,0,0). The reduced
SU~2! Wigner functions in this expression are of the type with asymptotic limits given by Eq.~22!.
Thus, we obtain

Dn,(l)
(l) ~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!→S l

4 p2 n1n2n3
D 1/4

e2 i [(n22n3)a11(n21n3)g112n1a2]/2

3e2[(n21n3)(b12bn2n3
)21l(b22bn1 ,n21n3

)2]/4 ~99!

with bn2n3
defined by Eq.~35!.

More generally, forn8 close to the highest weight, the use of the harmonic oscillator limit
Eq. ~66! give
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Dn,n8
(l)

~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!

→e2 i [(n22n3)a11(l2n1)g112(n11n182l)a21(l2n18)a31(n282n38)g3]/2

3 ~21!l2n18 S l2n1

4n1n2n3
D 1/4

(
n50

l2n18

ein(g12a21a3)S l2n

l2n12nD 1/4

3 un~A 1
2 ~l2n1! ~b12bn2 ,n3

!!

3u2I 2n~A 1
2 ~l2n!~b22bn1 ,l2n12n)! dI 2n,N

I ~b3!, ~100!

whereI 5 1
2 (n281n38) andN5 1

2 (n282n38). It can be seen that this expression reduces to that of
~99! when I 50 andn85(l,0,0).

This limiting expression for thel560 SU~3! Wigner function is compared with the exa
expression for a range of values of some of its arguments in Fig. 9.

B. Limits of „l,0… Wigner functions for n and n8 both close to vertices

If n andn8 are both close to the highest weight, then the first and last SU~2! Wigner functions
in Eq. ~97! are those of small-dimensional SU~2! irreps, while, for the middle function, the limi
given by Eqs.~69! and ~70! applies. Thus, forn18>n1 ,

Dn,n8
(l)

~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!

→ (
n50

l2n18

e2 i (n11n182l1n)a2A~l2n182n!!

~l2n12n!!
S b2

2
An11n18

2
D n182n1

3 D (n22n3)/2,(l2n122n)/2
(l2n1)/2

~a1 ,b1 ,g1! D
(l2n

1822n)/2,(n
282n

38)/2

(l2n18)/2
~a3 ,b3 ,g3!

3L
l2n

182n

(n182n1)
~b2

2~n11n18!/8!e2b2
2(n11n18)/16 ~101!

and, forn18<n1 ,

Dn,n8
(l)

~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!

→ (
n50

l2n1

e2 i (n11n182l1n)a2A~l2n12n!!

~l2n182n!!
S 2

b2

2
An11n18

2
D n12n18

3D (n22n3)/2,(l2n122n)/2
(l2n1)/2

~a1 ,b1 ,g1! D
(l2n

1822n)/2,(n
282n

38)/2

(l2n18)/2
~a3 ,b3 ,g3!

3L
l2n12n

(n12n18)
~b2

2~n11n18!/8!e2b2
2(n11n18)/16. ~102!

This limiting expression for thel560 SU~3! Wigner function is compared with the exa
expression for a range of values of some of its arguments in Fig. 10.

If n is near~l,0,0! andn8 near~0,l,0!, then the matrix element^n2n3ub1ul2n12n,n& in Eq.
~97! is a reduced Wigner function for a low-dimensional SU~2! irrep. The second matrix elemen
^n1 ,l2n12nub2un18 ,l2n182n& is one for whichn1@l2n12n and n18!l2n182n. Thus, by
Eq. ~71!, it is re-expressed in the form

^n1 ,l2n12nub2un18 ,l2n182n&5~21!l2n182n^n1 ,l2n12nub21pul2n182n,n18&
~103!
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FIG. 9. The SU~3! Wigner functionD n,n8
(l) (0,b15x1p,0,0,b25x2p,0,b35p/7,0) for (l)5(60,0,0),n5(24,21,15),n8

5(54,4,2). The top graphs show, respectively, the surfaces for the exact function and its estimate using Eq.~100!. The
sequence of slices provide a detailed comparison between the exact function~full line! and its estimate~dashed line! for the
sequence of values ofb250.3p,0.4p,...,0.8p.
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FIG. 10. The SU~3! Wigner functionD n,n8
(l) (0,b15x1p,0,0,b25x2p,0,b35p/7,0) for (l)5(60,0,0), n5(52,6,2), n8

5(50,7,3). The top graphs show, respectively, the surfaces for the exact function and its estimate using Eq.~102!. The
sequences of slices provide a detailed comparison between the exact function~full line! and its estimate~dashed line! for
the sequence of values ofb250.1p,0.2p,...,0.6p.
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for which Eqs.~69! and~70! apply. The third matrix element,^l2n182n,nub3un28n38&, is one for
which l2n182n@n andn28@n38 and for which Eqs.~69! and ~70! apply directly.

Asymptotic expressions are similarly found forn and n8 near other vertices. Thus, for in
stance, ifn andn8 are both close to~0,l,0!, then each of the three SU~2! Wigner functions in Eq.
~97! will be approximated by the limit given by Eqs.~69! or ~70!.

C. „l,0… Wigner functions for n and n8 both central

If n andn8 are both central weights of a~l,0! irrep andl→`, then the E~2! limit of Eq. ~74!
applies. If we replace the SU~2! matrix elements in Eq.~97! by their E~2! limits, we obtain

Dn,n8
(l)

~a1 ,b1 ,g1 ,a2 ,b2 ,a3 ,b3 ,g3!

→e2 i [(n22n3)a11(l2n1)g112(n11n182l)a21(l2n18)a31(n282n38)g3]/2

3 (
n50

nmax

ein(g12a21a3)Jn32n~A~2n21n32n!~n31n! b1/2!

3Jn
182n1

~A~n11n18!~2l2n12n1822n! b2/2!

3Jn2n
38
~A~2n281n382n!~n381n! b3/2!. ~104!

It is important to note that this expression presumes the E~2! limit to be applicable for all values
of n that occur in the summation. The following considerations show that this presumption is
for sufficiently small values ofb1 andb3 .

Consider the matrix element

^n2n3ub1ul2n12n,n&5d(n22n3)/3,(l2n122n)/2
(l2n1)/2

~b1!. ~105!

For n25n35l/3, for example, this matrix element becomes

d0,l/32n
l/3 ~b1!5A 12p

2l13
Yl/3,l/32n~b1,0!. ~106!

For smallb1 , it takes its largest values whenn'l/3. Moreover, Figs. 2 and 3 show that, forl
560, the value of this matrix element becomes negligible forb1,p/5 as n approaches 0. A
similar result holds for the matrix element^l2n182n,nub3un28n38& for n28'n38'l/3.

The limiting expression~104! for the l5150 SU~3! Wigner function is compared with the
exact expression for a range of values of some of its arguments in Fig. 11.

V. APPLICATIONS TO QUANTUM INTERFEROMETRY

Quantum interferometers are important in quantum information theory and for precision
surements of phases shifts, e.g., for the detection of gravitational waves.21 The accuracies obtain
able with such devices are naturally expressed in terms of Wigner functions—SU~2! Wigner
functions for two-channel interferometers and SU~3! Wigner functions for three-channel interfe
ometers.

A. Two-channel interferometry

A two-channel interferometer is an optical device, such as a beam splitter or a Mach–Ze
interferometer, that transforms a two-channel input state of the electromagnetic field into a
channel output state. If the device consists of passive optical elements that conserve
number~i.e., the sum of the photon numbers in the output channels equals the sum in the
channels!, then it is characterized by a U~2! transformation.1
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FIG. 11. The SU~3! Wigner function D n,n8
(l) (0,b15x1p,0,0,b25x2p,0,b352p/9,0) for (l)5(150,0,0), n

5(46,44,49),n85(47,52,51). The top graphs show, respectively, the surfaces for the exact function and its estimat
Eq. ~104!. The sequences of slices provide a detailed comparison between the exact function~full line! and its estimate
~dashed line! for the sequence of values ofb250.1p,0.2p,...,0.6p.
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In a classical description of two-channel interferometry, the electromagnetic field is r
sented by a two-component complex vectora5(a1 ,a2), wherea1 anda2 are the amplitudes o
the fields in the two channels. The interferometer effects a U~2! transformation

a in→aout5va in, ~107!

where

v5S u v

2v* u* D , with uuu21uvu251, ~108!

is a U~2! matrix. For example, a beam splitter effects a U~2! transformation withu5eif tr cosu and
v5eifref sinu where f tr is the phase shift due to transmission,f ref is the phase shift due to
reflection, and cosu is the amplitude transmissivity of the beam splitter.2 A lossless two-path
interferometer, such as a Mach–Zehnder interferometer, is also described by a U~2! transforma-
tion; in effect a lossless two-path interferometer is equivalent to a number-conserving
splitter.

In quantum mechanics, a closest-to-classical two-channel field is a two-component co
state of a two-dimensional harmonic oscillator

ua&[u~a1 ,a2!&5ea1a1
†
2a1* a1ea2a2

†
2a2* a2u0&, ~109!

where u0& is the harmonic oscillator ground state anda1
† and a2

† are harmonic oscillator raising
operators. The raising operators transform undervP U~2! according to the equation

a1
†→Û~v!a1

†Û†~v!5ua1
†2v* a2

† ,
~110!

a2
†→Û~v!a2

†Û†~v!5u* a2
†1va1

† ,

from which it follows thatÛ(v)ua&5uva& and that the transformation of a coherent input
given by

ua in&→uaout&5uva in&. ~111!

These relationships express the correspondence between classical and quantal cohere
More importantly, they show that an interferometer transforms any input state by a mauc&
→Û(v)uc&. An arbitrary input stateuc& is a superposition( jmcjmu jm& of basis states defined i
a Schwinger representation by

u jm&5
~a1

†! j 1m~a2
†! j 2m

A~ j 1m!! ~ j 2m!!
u0&, m52 j ,...,1 j . ~112!

Such states are identified with fields having a fixed number, 2j , of photons; an input stateu jm& is
one with j 1m photons in channel one andj 2m in channel two. Thus the transformation of a
arbitrary state is expressed in terms of SU~2! Wigner functions

Û~v!:uc&→uc8&5Û~v!uc&5(
jmn

cjm u jn& D nm
j ~v!, vPSU~2!. ~113!

It is interesting to note that a minimal uncertainty state entering channel one

u~a,0!&5eaa1
†
2a* a1u0&, ~114!

is a coherent state of the Heisenberg–Weyl group, whereas the state
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Û~v!u jm5 j & ~115!

is a coherent state of the group U~2!, according to the generalized definition of coherent states
Perelomov and others.22 Thus a state emerging from a quantum interferometer when the inp
the stateu(a,0)& is a combined Heisenberg–Weyl–U~2! coherent state

uv~a,0!&5Û~v!eaa1
†
2a* a1u0&. ~116!

Some of the interesting questions in quantum interferometry concern the measurem
phase shifts of specially prepared quantum input states. Consider, for example, the phase

a1→e2 iua1 , a2→a2 , ~117!

of a classical input. With the understanding that only relative phase shifts of the two compo
(a1 ,a2) are measured, such a phase shift is equivalent to

a1→e2 iu/2a1 , a2→eiu/2a2 . ~118!

Thus the equivalent transformations of quantum mechanical states are generated by

a1
†→e2 iu/2a1

† , a2
†→eiu/2a2

† . ~119!

It is then seen that the corresponding transformationu jm&→e2 imuu jm& of an SU~2! weight state is
an overall phase change and undetectable. However, the transformation becomes detecta
symmetric quantum interferometer in which the beams pass through beam splitters imme
before and immediately after they are phase shifted. If the first beam splitter effects an~2!

transformatione2 i Ĵxp/2 and the second reverses the transformation of the first, then the net
of the quantum interferometer is a detectable transformation in which

u jm&→eiĴxp/2e2 iu Ĵze2 i Ĵxp/2u jm&5e2 iu Ĵyu jm&5(
n

u jn& dnm
j ~u!. ~120!

In such an interferometer, a minimal uncertainty inputu(a,0)& is transformed to an outpu
u(a cos(u/2),a sin(u/2))&. Thus, the ratio tan(u/2) of the output amplitudes provides a measure
u; if only intensities are measured it provides a measure ofu modulop. Measurements of phas
shifts can also be made with other input states and it is of interest to consider choices w
greatest potential for accuracy.

The potential accuracy of a phase shift measurement is given by the width of the distrib
function

Nu~w!5u^c~u!ue2 iw Ĵyuc&u25u^cue2 i (w2u) Ĵyuc&u2. ~121!

It follows that Nu(w)5P(w2u) where

P~u!5u^cue2u Ĵyuc&u2. ~122!

For example, ifuc& is the highest weight stateu jm5 j & thenP(u) is given by Eq.~23!,

P1~u!5udj j
j ~u!u25exp@2 j u2/2#. ~123!

On the other hand, ifuc& is the stateu j m50&, thenP(u) has the asymptotic expression given
Eq. ~58!,

P2~u!5ud00
j ~u!u2;uJ0~ j u!u2. ~124!
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Thus, in spite of the fact that the highest weight stateu j j & is a minimal uncertainty state, th
variance inu when the input state isu j j & is proportional to 1/Aj , whereas for au j m50& input
state, it is proportional to 1/j . This can be understood as follows. The density distribution o
spherical harmonicuYj j (u,w)u2 is concentrated about theu50 pole whereas the densit
uYj 0(u,w)u2 is spread uniformly about theu5p/2 equatorial circumference. Thus, the variance
u can be much smaller for the latter distribution without violation of the uncertainty principle.
raises the question as to whether or not there might exist states with even less uncertainty
to the Ĵy orientation than the stateu j 0&. One candidate is the so-called SU~2! phase states3,6,23

u j w&5~2 j 11!21/2 (
m52 j

j

eimwuy; j m&, ~125!

whereuy; j m& is an eigenstate ofĴy with eigenvaluem. Puttinguc& equal tou j w& in Eq. ~122! gives

P3~u!5u^ j wue2 iu Ĵyu j w&u25~2 j 11!22U(
m

eimuU2

5~2 j 11!22ux j~u!u2, ~126!

wherex j is the well-known character of the SU~2! irrep of angular momentumj . Thus,

P3~u!5
sin2@~2 j 11!u/2#

~2 j 11!2 sin2@u/2#
. ~127!

The function P3 is also familiar in diffraction theory. The variance ofw for this function is
proportional to 1/(j 10.5).

The distribution functionP(u) is shown in Fig. 12 for each of the three input statesu j j &, u j 0&,
and u j u&. The figure shows that the phase state and them50 state gives much more accura
measurements than the highest weight state. The down side is that these states are mu
difficult to prepare and measure than a coherent mixture ofm5 j minimal uncertainty states
~Another candidate for improving the estimation of phase is the so-called intelligent state,24 which
is also difficult to prepare.!

FIG. 12. The distribution functions given by Eqs.~123!, ~124!, and~127! for j 520.
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The advantage of usingu jm50& or SU~2! phase states overu jm5 j & states for precision
measurements is an example of the greater potential for acquiring or transmitting informat
quantal states than is possible with classical states. A highest weight stateu j j & is a state with all
photons in channel one. A classical-like coherent state

u~a,0!&5eaa1
†
2a* a1u0&, ~128!

is a superposition of many highest weight states:

u~a,0!&5e2uau2/2(
j

a2 j

A~2 j !!
u j j &. ~129!

The distribution function for a coherent state is given by

u^~a,0!ue2 iu Ĵyu~a,0!&u25u^~a,0!u~a cos~u/2!,a sin~u/2!!&u25e2uau2(12cos(u/2)). ~130!

Thus, if uau2 is set equal to the average number of photons, 2j , then asj→` this distribution
function approaches the value exp@2ju2/2# that it has for the number stateu j j & as one would
expect.

In contrast, the stateu j m50& is unlike any classical state. In quantum mechanics it is a s

u j 0&5
~a1

†! j~a2
†! j

j !
u0&, ~131!

having an equal number of photons in each channel. Whereas the preparation of such a s
not been performed, a compromise state is the coherent linear superposition of such states25

by a two-mode squeezed coherent state

eb(a1
†a2

†
2a1a2)u0&5sechb(

j 50

`

~ tanhb! j u j m50&. ~132!

This state produces the desired 1/^ j & scaling of the phase uncertainty26 for the appropriately
weighted average value ofj . However, apart from the problems of producing such a squee
state, it is also noted that the distribution ofj values is heavily weighted in favor of low-j values.
Thus, it is doubtful that much could be gained by the use of such squeezed states.3

One might suppose that a classical-like input

u~a,a!&5eaa1
†
2a* a1eaa2

†
2a* a2u0&, ~133!

with equal amplitudes in each of the two ports might have some advantages. Such a state
sponds to an equal distribution of photon numbers in each port with a relatively narrow s
about some mean value. However, it follows from Eq.~111! that

u~a,a!&5e2 i Ĵyp/2 u~& a,0!&. ~134!

Hence

P~u!5u^~a,a!ue2 iu Ĵyu~a,a!&u25u^~& a,0!ue2 iu Ĵyu~& a,0!&u2, ~135!

and the variance is precisely the same as for the input stateu(& a,0)&. It should be noted that
whereas the stateu(a,a)& can be obtained by an SU~2! rotation of the stateu(& a,0)&, it is
impossible to rotate a highest weight stateu j j & into the stateu jm50&.

The optimization of the inputs to an interferometer in order to yield the most precise p
shift information possible with a limited number of photons is important; e.g., for the detectio
 18 Oct 2001 to 216.211.76.202. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



hannel
into one
n
large

states

but
-
rre-
evices

er

carry
ich all

ights

erence
simul-
urce is
them

ifts

h an
s of a
e
e
e

of

uge

nnel
ination

the
-
tion
essed
r
chievable

2340 J. Math. Phys., Vol. 42, No. 5, May 2001 Rowe, de Guise, and Sanders

Downloaded
gravitational waves.21 Caves has suggested injecting a standard coherent state into one c
and a squeezed vacuum state into the other. Another suggestion is to put a squeezed input
channel and an antisqueezed input into the other.27 Clearly an expansion of such inputs in a
SU~2! basis will make it possible to analyze the precisions obtainable with such inputs in the
photon number limit using the asymptotic SU~2! Wigner functions given in this paper.

B. Three-channel interferometry

Similar considerations apply to a three-channel interferometer which transforms input
by a U~3! transformation

T~g!:uc&→T~g!uc&, gPU~3!. ~136!

The transformation is analogous to the U~2! transformation discussed in the preceding section,
with T(g) a unitary representation of a matrixgPU(3). The U~3! transformation can be factor
ized into a sequence of SU~2! transformations and an overall phase factor; physically, this co
sponds to a realization of a three-channel interferometer as a combination of two-channel d
~phase shifters, mirrors and beam splitters!.

The infinitesimal generators of the unitary transformationT(g) are given in a generalized
Schwinger representation in Eq.~78!. In such a representation, basis states for an SU~3! irrep of
highest weight~l,0! are weight statesun&[un1n2n3&; they can be regarded as triplet Fock numb
states withn i photons in channeli of the interferometer and fixed total photon number.

Many of the results for two-channel interferometry, discussed in the preceding section,
forward to the three-channel case in an intuitively clear manner. For instance, the state in wh
photons enter through channel one is the minimal uncertainty~highest weight! state u(l)&
[ul,0,0&. For analysis of experiments with such an input state, the SU~3! Wigner functionDn,(l)

(l)

and its asymptotic limit is relevant. On the other hand, the Wigner functions for central we
are relevant for balanced input states.

Whereas the two-channel interferometer is suited to the measurement of phase diff
between two channels of propagation, it may be desirable to measure multiple phase shifts
taneously, e.g., because the phase shifts are transient or the mean particle flux of the so
limited. Moreover, the most efficient use of photons for precision measurement is to divide
up and measure relative phases between multiple paths.7,6 The SU~N! interferometer is ideally
suited for this purpose. The SU~3! interferometer allows the measurement of two phase sh
simultaneously.

D’Ariano and Paris7 have shown that much improved accuracy is already obtained wit
easily produced coherent state input by suitably dividing the input into the many channel
multichannel interferometer. They show that with a mean numberl of photons, the variance of th
phase shift estimation scales asDu2}1/N2l for an N-channel interferometer. In contrast, if th
fixed input of l photons were to be split betweenN21 two-channel interferometers, then th
variance of each would be proportional to (N21)/l and, with the estimate ofu given by the mean
of the u i obtained in the two-channel interferometers, the variance would be independentN
~assuming the spread of measured phase shifts is small compared to the range 0 to 2p!. Thus,
nothing is gained by splitting thel photons over many two-channel interferometers but a h
gain results from appropriate use of a multichannel interferometer.

Still further gains can, in principle, be achieved by use both of exotic inputs and multicha
interferometers. The balanced input state is a preferred input state for phase-shift determ
but it is hard to generate. Also, it is just one of many inputs which can, in principle, improve
precision of phase-shift estimation. The generalization to SU~3! of the SU~2! phase state consid
ered in the preceding section,6 could also yield superior scaling laws for the phase-shift estima
in terms ofl. The precision of two simultaneously measured phase shifts is rigorously expr
in terms of the covariance matrix for the two phases. This 232 matrix includes the variance fo
each phase and the covariance between the two phases. Detailed analyses of the results a
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with various techniques and three-channel inputs is in principle possible by expanding the
in an SU~3! basis and using the asymptotic Wigner functions to infer variances as don
two-channel interferometers in Sec. V A.

VI. CONCLUDING REMARKS

In this paper, we have derived several previously unknown asymptotic limits of SU~2! Wigner
dmn

j functions which converge rapidly asj→` and are shown to be accurate over a wide range
their arguments. We have also shown how SU~3! Wigner functions for multiplicity-free irreps of
highest weight~l,0! can be factored into products of SU~2! Wigner functions so that their limits
can be inferred from those of SU~2!. This kind of inference is not limited to SU~3! and can be
generalized to SU~N! irreps of highest weight~l,0,...! for N.3.

Explicit limiting expressions have been given for some representative classes of~3!
Wigner functions. In particular, we have considered Wigner functions for states whose weigh
either extremal or central in the terminology of Sec. IV. Other expressions can be deriv
variations of the methods given. For example, useful asymptotic SU~3! Wigner functions can be
determined for which one weight is extremal and the other is close to a side. Depending
domains of the initial and final states of a Wigner function, it will often happen that the ex
sions are much simpler in some other set of SU~3! Euler angles than those given. This is a simp
reflection of the fact that a given SU~3! transformation may be simple when expressed as
sequence of SU~2! transformations but seemingly complex when expressed in some other
Thus, by choosing the most appropriate sequence the number of summations over prod
SU~2! Wigner functions can be minimized.

Asymptotic limits of Wigner functions are of interest for many reasons. In situations w
they are valid, they can facilitate computations and provide quick estimates of the behavi
quantum systems. In this way they give physical insight into the ways quantal systems ap
classical limits. This has been illustrated in this paper by using the limits to estimate varian
phase shift measurements by quantum interferometry and to determine the ways they sca
the number of photons. Asymptotic limits may also be important in quantum information th
for identifying quantum states that behave in very nonclassical and potentially useful ways

Our initial hope was to derive asymptotic expressions for the Wigner functions of ge
SU~3! irreps. However, while we did succeed in deriving some expressions, they proved
numerical investigation to be accurate only over narrow ranges of their arguments. Thus, w
some mathematical interest, they are of limited practical value. Clearly further investigat
needed before any results are presented.
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