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Abstract
We provide a coarse but intuitive classification of squeezing in quantum systems
with SU (n) symmetries. This classification is based on the non-equivalent paths
(classical trajectories) in the corresponding phase-space. The example of SU (3)

is studied in details.
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1. Introduction

Squeezing—by which we mean the reduction of the fluctuations of some observable below
a threshold to be described below—is important on account of its deep connections with
entanglement and quantum metrology. It is physically understood as reflecting the presence
of ‘quantum correlations’ between basis elements of the Hilbert space appropriate for the
description of a quantum system, and has been much discussed for the quantum harmonic
oscillator or for quantum spin (or su(2)) systems. The objective of this paper is to generalize
a definition of squeezing beyond those two examples to quantum systems described by
observables in the Lie algebra su(n), and to propose a rough classification of squeezing in
system with higher symmetries. Such systems include, for instance: Bose–Einstein condensates
for which quantum tunnelling between several finite wells is important; ensembles of many
n-level atoms; n-beam splitters, and others.

To establish a threshold for squeezing, we will use coherent states [1]. For a fixed
representation, these states are obtained by the action of a global SU (n) group transformation
on the highest weight state. This highest weight can be expressed as a product of an appropriate
number of copies of the highest weight state of the fundamental representation, and can thus be
considered as separable. Any coherent state can therefore also be considered as separable and
so cannot as a matter of definition exhibit the kind of quantum correlations we will associate
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with squeezing. (There can exist in the Hilbert space highly correlated states—examples are
the so-called Dicke states in spin-like systems; these kinds of correlations however are not the
ones that lead to squeezing).

Squeezing in quantum systems with SU (2) symmetry has been extensively studied in
[2–9], and reviewed in [10]. A general squeezing criterion for a collection of particles with
higher spins has been proposed in [11]. This definition directly generalizes the definition of
[12]. Other definitions are possible [2].

Using coherent states, we observe there exists a family of observables, related by subgroup
transformations and depending on 2n − 3 continuous parameters, such that the fluctuations of
any operator of the set, when evaluated in a coherent state, are isotropic, i.e. are unchanged
by the subgroup transformations and do not depend on those parameters. This invariance
property allows us to set the threshold for quantum correlations as the fluctuation of specified
observables evaluated in a coherent state, and geometrically understand squeezing as a
deformation of the probability distribution in the appropriate phase space so it is no longer
invariant under the subgroup transformations.

In systems with higher symmetries, correlations leading to squeezing, i.e. to the reduction
below the isotropic limit of the fluctuations of the observables for which fluctuations are
uniform in the coherent states, can be produced in several non-equivalent ways. A coarse
classification can be done on the basis of the type of correlations generated between states:
different types of phase-space deformations of quasi probability distributions are related to a
labelling scheme for states based on the (recursive) subgroup chain

SU (n) ⊃ SU (n − 1) ⊗ U (1) ⊃ SU (n − 2) ⊗ U (1) ⊗ U (1) . . . . (1)

with SU (2) ⊃ U (1) as the last link.
The properties of phase space are themselves inherited from the coset structure associated

with coherent states. For the symmetric (i.e. one-rowed) representations of SU (n), the highest
weight is invariant (up to an overall phase) under SU (n − 1) ⊗ U (1) ∼ U (n − 1) and the
resulting geometry is that of the SU (n)/U (n − 1) sphere.

For instance, in spin-like states, states transforms naturally under the group SU (2) and
are labelled through the SU (2) ⊃ U (1) chain using the index m. There is only one class of
correlations, based on U (1) invariance: even if the so-called one- and two-axes squeezing
transformations are functionally different, both generate correlations between every U (1)-
invariant subspace (spanned by a single | jm〉 state) of the entire SU (2) representation.

An SU (3) representation decomposes into a direct sum of SU (2) ⊗ U (1) subspaces,
which further decomposes to a sum of U (1)⊗U (1) weight subspaces. In systems with SU (3)

symmetry, we identify two types of essentially inequivalent correlations: the first type is due to
correlations between coherent states in these different SU (2)⊗U (1) subspaces; the second is
a result of correlations between individual states in the representation, labelled by the complete
SU (3) ⊃ SU (2) ⊗ U (1) ⊃ U (1) ⊗ U (1) chain.

Because squeezing is well described in the semiclassical limit as a deformation of an
initial phase space distribution, it is appropriately convenient to describe squeezing in terms
of the geometrical picture provided by phase space dynamics. In this paper, we will study
the evolution of an initially coherent SU (3) state generated by a Hamiltonian nonlinear in
su(3) generators. We will illustrate how inequivalent Hamiltonians produce different types
of correlations. Using semiclassical methods for SU (n) systems [13–15], we will relate the
deformation of the Wigner function associated with a suitable initial state to specific types of
correlations.

In systems with SU (n) symmetries, the ideas sketched above can be obviously
generalized: there will be a hierarchy of squeezings, due to correlations between SU (n − 1),
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SU (n − 2), . . . , SU (2) coherent states, all the way down to individual states in the
representation. These squeezings can all be described geometrically through a deformation of
a phase-space quasi-distribution.

2. Permutation-symmetric systems with SU(3) symmetry

We will discuss exclusively irreducible representations of SU (3) of the type (λ, 0). These
are also sometimes known as symmetric or ‘one-rowed’ representation as the Young diagram
associated with this representation contains a single row of λ boxes.

2.1. SU (3) coherent states

A convenient realization of su(3) is obtained by using creation and destruction operators for
harmonic oscillator states. Starting with nine Ĉi j = a†

i a j, i, j = 1, 2, 3, we have

[Ĉi j, Ĉk�] = Ĉi�δ jk − Ĉk jδi�. (2)

The algebra su(3) is spanned by the six ladder operators Ĉi j, i �= j and two diagonal Cartan
elements, which we take as

ĥ1 = 2Ĉ11 − Ĉ22 − Ĉ33, ĥ2 = 1
2 (Ĉ22 − Ĉ33). (3)

The operators Ĉi j act in the standard way on the three-dimensional oscillator kets |ν1ν2ν3〉.
The set {|ν1ν2ν3〉, ν1 + ν2 + ν3 = λ} is a basis for the irrep (λ, 0) of dimension

1
2 (λ + 1)(λ + 2). The highest weight state of the irrep is |λ00〉.

Elements in the SU (3) groups are parametrized, following [16], as

R(ω̃) = R23(α1, β1,−α1)R12(α2, β2,−α2)T (α3, β3, γ1, γ2)

T (α3, β3, γ1, γ2) ≡ R23(α3, β3,−α3) e−iγ1(2ν1−ν2−ν3) e−iγ2(ν2−ν3 )/2, (4)

where ω̃ ≡ (α1, β1, α2, β2, α3, β3, γ1, γ2) and Ri j(η, θ, ϕ) is a transformation in the SUi j(2)

subgroup (i �= j). This subgroup is obtained by exponentiation of elements in sui j(2)

subalgebra, spanned by

sui j(2) = 〈Ĉi j, Ĉji,
1
2 [Ĉi j, Ĉji]〉. (5)

In the fundamental 3 × 3 representations of SU (3), Ri j is a block matrix transforming
only lines i and j of basis vectors.

The highest weight state for the irrep (λ, 0) is |λ00〉. It is stable under T (α3, β3, γ1, γ2).
The set of such transformations generates a U23(2) subgroup which we write as H. Coherent
states are labelled by points on SU (3)/U23(2) ∼ S4. We use ω = (α1, β1, α2, β2) as
coordinates on S4. Thus, the SU (3) coherent state

|ω〉 = D(ω)|λ00〉 ≡ R23(α1, β1,−α1)R12(α2, β2,−α2)|λ00〉
= R23(ω1)R12(ω2)|λ00〉. (6)

The highest weight state |λ00〉 can be expressed as the tensor product of λ copies of the highest
weight state |100〉 for a ‘single qutrit’:

|λ00〉 = |100〉1 ⊗ |100〉2 ⊗ · · · ⊗ |100〉λ. (7)

As a result, |ω〉 can also be expressed as a product of λ one-qutrit states

|ω〉 ∝ |ω〉1 ⊗ |ω〉2 ⊗ · · · ⊗ |ω〉λ, (8)

|ω〉a = cos 1
2β2|100〉a + eiα2 cos 1

2β1 sin 1
2β2|010〉a + ei(α1+α2 ) sin 1

2β1 sin 1
2β2|001〉a. (9)

One verifies without difficulty that the variance of the observable

K(α3, β3, γ1, γ2) ≡ T (α3, β3, γ1, γ2)(Ĉ13 + Ĉ31)T
−1(α3, β3, γ1, γ2), (10)
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when evaluated using the highest weight state |λ00〉, is independent of the angles
(α3, β3, γ1, γ2) and equal to λ. Moreover, K(α3, β3, γ1, γ2) actually depends only on the
combination χ ≡ 6γ1 + γ2 so we will henceforth write K(α3, β3, χ ).

It follows from this definition that the variance of the shifted observable

K(ω;α3, β3, χ ) ≡ D(ω)K(α3, β3, χ )D−1(ω), (11)

when evaluated in the coherent state D(ω)|λ00〉, is also uniform and equal to λ. We use
(�K(ω;α3, β3, χ ))2 = λ as our squeezing threshold and define an su(3) state |ψ〉 as squeezed
if there is an observable of the form K(ω; α̃3, β̃3, χ̃ ) for which

(�K(ω; α̃3, β̃3, χ̃ ))2 < λ (12)

when evaluated in |ψ〉.

2.2. Two types of nonlinear squeezing transformations

A simple way to produce correlations is to consider evolutions generated by Hamiltonians that
are nonlinear functions in the Cartan elements.

2.2.1. Pure SU (3) correlations. Start with

|ω〉 = R23(ω1)[R12(ω2)|λ00〉]

= R23(ω1)

[∑
p

|λ − p, p, 0〉D
1
2 λ
1
2 λ−p, 1

2 λ
(ω2)

]
(13)

=
∑

p

[R23(ω1)|λ − p, p, 0〉]D
1
2 λ
1
2 λ−p, 1

2 λ
(ω2) (14)

with D�
mm′ (ω2) the standard SU (2) Wigner D-function. Note that states of the form |λ− p, p, 0〉

are SU23(2) highest weight for the irrep of dimension p + 1.
Thus, the states R23(ω1)|λ − p, p, 0〉 are SU23(2) coherent states for each different p

|ω1; p〉 ≡ R23(ω1)|λ − p, p, 0〉 =
∑

q

D
1
2 p
1
2 (p−2q), 1

2 p
(ω1)|λ − p, p − q, q〉. (15)

With this we can expand the SU (3) coherent state (6) on the basis of the SU23(2) coherent
states:

|ω〉 =
λ∑

p=0

|ω1; p〉 D
1
2 λ
1
2 λ−p, 1

2 λ
(ω2). (16)

The su(3) Cartan element ĥ1 commutes with the SU (2)23 transformations generating the
coherent state |ω〉. Thus, a unitary operator of the general form

U1(ξ ) = exp(−iξH1(ĥ1)), (17)

where H1(ĥ1) is an arbitrary function of ĥ1, will produce

U1(ξ )|ω〉 =
∑

p

[R23(ω1)U1(ξ )|λ − p, p, 0〉]D
1
2 λ
1
2 λ−p, 1

2 λ
(ω2) (18)

=
∑

p

[e−iξH1(2λ−3p)|ω1; p〉]D
1
2 λ
1
2 λ−p, 1

2 λ
(ω2) (19)

where H1(2λ − 3p) depends only on the SU (2)23 index p (and the SU (3) index λ of course).
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Equation (19) has a transparent meaning: it is a superposition of SU (2) Dicke-like coherent
states with a nonlinear phase dependent on each SU23(2) coherent state. This phase is at the
origin of the ‘squeezing’, i.e. appearance of specific quantum correlation between the |ω1; p〉
coherent states of equation (15). We will call such correlations ‘pure’ SU (3) squeezing. As
it will be shown later, the corresponding Wigner function is deformed in a specific way, and
appropriately chosen observables become ‘squeezed’, i.e. their initially isotropic fluctuations
of the initial coherent state decrease below the standard limit λ as a result of the correlations
introduced by the nonlinear phase.

2.2.2. SU (2) correlations in SU (3) states. The su(3) algebra contains a second Cartan
element, ĥ2, which does not commute with the SU23(2) transformation that generates |ω〉.

Thus, with H2(ĥ2) some nonlinear function in ĥ2, we now consider

U2(ξ ) = exp(−iξH2(ĥ2)). (20)

Using again the notation of equation (15), we see that

U2(ξ )|ω〉 =
∑

p

[exp(−iξH2(p − 2q))|ω1; p〉]D
1
2 λ
1
2 λ−p, 1

2 λ
(ω2), (21)

where [exp(−iξH2(p − 2q))|ω1; p〉] is an SU (2) squeezed state [12]:

|ω1; ξ ; p〉 =
∑

q

e−iξH2(p−2q)|λ − p, p − q, q〉D
1
2 p
1
2 (p−2q), 1

2 p
(ω1). (22)

The transformation U2(ξ ) thus generates SU (2)-like squeezed states inside each SU23(2)

subspace through a nonlinear phase that depends on the basis index q.
In addition, U2(ξ ) will in general produce correlations between SU23(2) subspaces since

the index p labelling SU23(2) subspaces varies in a nonlinear way between the SU23(2)

subspaces. This last type of correlation strongly depends on amplitudes D
1
2 λ
1
2 λ−p, 1

2 λ
(ω2) of the

various SU23(2) coherent state in the decomposition of the initial state, i.e. in the geometrical
‘position’ of the initial SU (3) coherent state on S4 sphere.

Different patches of the initial quasidistribution will evolve at different rates so that,
over times of order ξ t ≈ 1 (� = 1 throughout), we can expect complicated self-interference
effects to occur when some patches of the initial quasidistribution catch up with others. On the
other hand, for time short enough to neglect this self-interference, the dynamics generated by
diagonal Hamiltonians is much simpler and leads only to evolutions of the phase angles α1,2,
i.e. the ‘amplitude’ angles β1,2 are not affected. In particular, the Hamiltonian H1(ĥ1), which
commutes with R23-type transformations, cannot change the parameters of SU23(2) coherent
states and produces evolution only of the angle α2. On the other hand, both α1 and α2 evolve
with time when the dynamics of the system is governed by H2(ĥ2).

2.3. SU (3) phase space representation

Following the prescription of [15], we associate to an operator X̂ a phase-space symbol

X̂ �→ WX (�) = tr(ŵ(�)X̂ ) (23)

using the quantization kernel ŵ(�):

ŵ(�) ≡ �(�)P̂�†(�), � ∈ SU (3)/U (2). (24)
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Here, �(�) is the matrix representation for the element � in the irrep (λ, 0). The essential
information about the mapping is contained in the SU23(2)-invariant operator P̂ given explicitly
by

P̂ =
λ∑

σ=0

T̂ λ
(σ,σ )(σσσ )0

(
dim(σ )

dim(λ)

)1/2

(25)

with T̂ λ
(σσ )(σσσ )0 the zero-weight (σσσ ), I = 0 component of the tensor operator transforming

by the su(3) irrep (σ, σ ). Notational details are found in [15] or [16]. (Note that equation (25)
corrects a misprint in [15]).

The Poisson bracket on S4 obtained using the parametrization (6) is found to be

{ f , g} = 4

sin β1 sin2 1
2β2

(
∂ f

∂α1

∂g

∂β1
− ∂g

∂α1

∂ f

∂β1

)
− 2 tan 1

2β1

sin2 1
2β2

(
∂ f

∂α2

∂g

∂β1
− ∂g

∂α2

∂ f

∂β1

)

+ 4

sin β2

(
∂ f

∂α2

∂g

∂β2
− ∂g

∂α2

∂ f

∂β2

)
, (26)

where f and g are any two functions on SU (3)/U (2).
The density operator ρ̂ω = |ω〉〈ω| = D(ω)|λ00〉〈λ00|D−1(ω) for the coherent state |ω〉

is mapped to the Wigner function Wρω
(�) = Wλ(ω

−1�). Here, the argument ω−1� of the
Wigner function is understood as the coset representative of the product of the corresponding
group elements. Moreover, Wλ(�) is the symbol corresponding to the highest weight |λ00〉
state

Wλ(�) =
λ∑

σ=0

C̃(σσ )(σσσ )0
λ00;λ00

√
2(σ + 1)3

(λ + 1)(λ + 2)
D(σ,σ )

(σσσ )0;(σσσ )0(�), (27)

with C̃(σσ )(σσσ )0
λ00;λ00 the matrix element

C̃(σσ )(σσσ )0
λ00;λ00 = 〈(λ, 0)λ00; 0| T λ

(σσ )(σσσ )0|(λ, 0)λ00; 0〉. (28)

An explicit expression for C̃(σσ )(σσσ )0
ν1ν2ν3;ν1ν2ν3

is given in the appendix.
Finally, one can verify that the SU (3) D-function D(σ,σ )

(σσσ )0;(σσσ )0(�) collapses to

D(σ,σ )

(σσσ )0;(σσσ )0(�) =
(

Pσ+1(cos β2) − Pσ (cos β2)

(cos β2 − 1)(σ + 1)

)
(29)

with P� a Legendre polynomial of order � so Wλ(�) actually depends on cos β2 only:

Wλ(�) = Wλ(β2). (30)

2.4. Semiclassical evolution leading to squeezing

2.4.1. General remarks and some Hamiltonians. For irreps of the type (λ, 0), in the
semiclassical limit where λ � 1, the short-time dynamics of an initially localized state is
well described by the Liouville-type equation for the Wigner function [17–19]:

∂tWρω
(�) = ε{Wρω

(�),WH (�)}P + O(ε3), (31)

where WH (�) is the symbol of the Hamiltonian and ε = 1
2
√

λ(λ+3)
is the semiclassical

parameter. The solution to (31) can be written in general form as

W (�|t) = W (�(t)), (32)

where �(t) denotes classical trajectories on the classical manifold. Each point of the initial
distribution thus evolves along a classical trajectory. In the special case of Hamiltonians
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linear in the generators of su(3), the motion in time of the initial distribution is simply a
rigid translation of the distribution in phase space. When the Hamiltonian is nonlinear in
the generators, the distribution is distorted in time in phase space, reflecting the presence of
correlations that can be associated with squeezing.

For simplicity we will consider Hamiltonians quadratic in the Cartan elements:

H1(ĥ1) = ĥ2
1 − 2λ + 3

5
ĥ1, H2(ĥ2) = ĥ2

2 + 2λ + 3

60
ĥ1. (33)

To simplify the analysis and focus on squeezing, terms proportional to ĥ1 have been inserted
to remove any rigid motion of the distribution.

We will select as initial state a coherent state located over the minimum of the Hamiltonian
WH on the S4 sphere so as to maximize the applicability of the semiclassical description of the
evolution.

2.4.2. Evolution generated by H1. The symbol for H1 in equation (33) is given (up to constant
factors) by

WH1 = 9
40

√
(λ − 1)λ(λ + 3)(λ + 4)(4 cos β2 + 5 cos(2β2)). (34)

The resulting evolution is easily obtained as

α2(t) = α2(0) − 9
5

√
(λ − 1)(λ + 4)(1 + 5 cos β2)t. (35)

We specify the initial state by choosing a coherent state with coordinates (A1, B1, A2, B2) so
it ‘sits’ above the minimum in the Hamiltonian, i.e. is located at A1 = B1 = A2 = 0 and
B2 = arccos(−1/5).

This Hamiltonian produces an evolution only in the angle α2. This angle enters in
amplitude of each SU23(2) coherent state in the expansion of the full SU (3) coherent state, as
per equation (16).

If we parametrize the coset representative of ω−1� by (ᾱ1, β̄1, ᾱ2, β̄2), we find

|ω〉 = R12(0, B2, 0)|λ00〉, (36)

cos β̄2 = 2 cos2( 1
2 B2) cos2( 1

2β2) + 2 cos2( 1
2β1) sin2( 1

2 B2) sin2( 1
2β2)

+ cos(α2) cos( 1
2β1) sin(β2) sin(B2) − 1 (37)

Wρω
(�) = Wλ(β̄2). (38)

Thus, the time evolution of the system is obtained by the replacement α2 → α2(t) in the
argument cos β̄2 of the Wigner function:

Wλ(β̄2|t) = Wλ(β̄2(t)), (39)

with α2(t) given in equation (35). All the other variables are constant in time.
Figure 1 shows the deformation resulting from time evolution under H1 in equation (33)

of the initial state of equation (36) with λ = 10. The Wigner function is given in the plane
α1 = β1 = 0, for t = 0.026. This value of t will be seen later to be the one for which the
state exhibits maximum squeezing. On the left is the Wigner function evolved using quantum
mechanical evolution, while on the right we show the Wigner function evolved using the
semi-classical Liouville-like evolution given in equation (31). One notices in the quantum
mechanical calculation some ripples and small regions where the distribution is negative;
neither of these features can be reproduced semi-classically.
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Figure 1. The Wigner function for the initial (coherent) state of equation (36) with λ = 10,
time-evolved under H1 in equation (33) to the optimal squeezing time t = 0.026, using quantum
mechanical evolution (left) and the semi-classical evolution (right).

2.4.3. Evolution generated by H2. The symbol for H2 is (up to constant factors)

WH2 = 1
480

√
(λ − 1)λ(λ + 3)(λ + 4)

× [
3 + 4 cos β2 + 5 cos(2β2) + 20(1 + 3 cos(2β1))sin4 (

1
2β2

)]
(40)

with resulting classical trajectories

α1(t) = α1(0) −
√

(λ − 1)(λ + 4) cos β1sin2

(
β2

2

)
t, (41)

α2(t) = α2(0) − 1
20

√
(λ − 1)(λ + 4)(2 + 5 cos β1(cos β2 − 1))t. (42)

This Hamiltonian generates a two-dimensional dynamics. The evolution of α1 results in the
deformation of individual SU23(2) coherent states, i.e. to the usual SU (2) squeezing. On the
other hand, the evolution of α2 produces another type of deformation of the initial SU (3)

coherent state that corresponds to correlations between SU23(2) coherent states as discussed
in section 2.2.2.

The minimum of WH2 occurs at B1 = 1
2π, B2 = π so we have

|ω〉 = R23
(
0, 1

2π, 0
)

R12(0, π, 0)|λ00〉, (43)

cos β̄2 = sin2 (
1
2β2

) + cos α1 sin β1sin2 (
1
2β2

) − 1, (44)

Wρω
(�) = Wλ(β̄2). (45)

The value of B2 = π collapses the D-functions in equation (16) to a δ so the initial coherent
state reduces for this particular value to a single SU23(2) coherent state, and the motion
becomes one-dimensional, i.e. only the angle α1 evolves in time.

As before, the time evolution of the system is obtained by the replacement α1 → α1(t) in
the argument cos β̄2 of the Wigner function:

Wλ(β̄2|t) = Wλ(β̄2(t)), (46)

with α1(t) given in equation (41).
Note that Wλ(β̄2(t)) does not depend on α2 so this angle evolves without affecting the

shape of the distribution. This can be observed on figure 2, where once again we present on the
left the quantum mechanical calculation, with ripples and regions of negativity in the quantum
mechanical calculations, and on the right the semi-classical calculation. For H2 the results
must be plotted in the α2 = β2 = 0 plane.
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Figure 2. The Wigner function for the initial (coherent) state of equation (43) with λ = 10,
time-evolved under H2 in equation (33) to the optimal squeezing time t = 0.251, using quantum
mechanical evolution (left) and the semi-classical evolution (right).

Although qualitatively similar the results obtained using H1, the evolution under H2 differ
from the evolution under H1 in some essential manner. The optimal squeezing times are
different and will be seen to scale differently with λ. Moreover, because the evolution is in
α1 only, one must examine slides in planes orthogonal to those used for the analysis of the
evolution under H1.

As a final remark, we note that although both examples of evolutions provided in this
discussion yield SU (2) correlations inside a single SU (2) subspace, the correlations are
necessarily inequivalent because they involve different quantum numbers.

2.5. Squeezing

In section 2.2, we distinguished two types of squeezing transformations in SU (3) system.
The first is related to correlations between SU (2) coherent states and the second is related to
squeezing of individual SU (2) coherent states.

Even if figures 1 and 2 both display a geometrical squeezing of the initially isotropic
SU (3) coherent state, both types of correlations yield different scaling behaviours with λ in
time and in the way they distort the initial state.

For pure SU (3) squeezing, the optimal squeezing time is shorter than for SU (2)-type
squeezing. This is because it is easier to correlate already localized states like SU (2) coherent
states than individual basis states. In the case of squeezing generated by H2, the initial state
takes the specialized form of a single SU (2) coherent state. Hence, the squeezing behaviour
generated by H2 for the initial coherent state located at the minimum of WH2 (�) is identical
to that generated by S2

z in SU (2) systems for an initial state located on the equator of the
S2 sphere. Figure 3 presents a more quantitative comparison of the optimal squeezing as a
function of t, generated by H1 and H2.

The difference between the two types of squeezing can be assessed more quantitatively by
considering the scaling behaviour with λ of location in time of the minimum of the squeezing
curve, as well as the location of this minimum on the vertical axis. The scaling behaviour is
summarized in table 1, where we have added the values of the parameters for SU (2) so as to
make comparison easy.

We see that the scaling behaviours under H = H2 are indeed those of SU (2) while the
scaling factors for the evolution under H = H1 are considerably different from the SU (2)

values.
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Figure 3. The time-evolution of squeezing for λ = 20. Black: Ĥ = Ĥ1; Red: Ĥ = Ĥ2.

Table 1. The scaling behaviour of the optimal time and depth as a function of λ for various
Hamiltonians.

Ĥ1 Ĥ2

Ĥ Pure SU(3) SU(2) Ŝ2
z

Optimal t λ−4/5 λ−2/3 j−2/3

Max squeezing λ2/3 λ0.37 j0.35

3. SU(n) symmetry

We now extend our discussion to SU (n). Throughout this section we will use the shorthand λ

to mean the irrep (λ, 0, . . . , 0) of SU (n).

3.1. General remarks

Again we use a realization in terms of harmonic oscillator creation and destruction operators.
With Ĉi j = a†

i a j, the algebra su(n) is spanned by the n2 − n ladder operators Ĉi j, i �= j =
1, 2, . . . , n and n − 1 Cartan elements. For convenience, we choose them as

ĥ1 = (n − 1)Ĉ11 −
n∑

k=2

Ĉkk = diag(n − 1,−1, . . . ,−1), (47)

ĥ2 = (n − 2)Ĉ22 −
n∑

k=3

Ĉkk = diag(0, n − 2,−1, . . . ,−1), (48)
...

ĥn−1 = Ĉn−1,n−1 − Ĉn,n = diag(0, . . . , 0, 1,−1). (49)

These operators act naturally on the set {|ν1, . . . , νn〉, ν1 +ν2 +· · ·+νn = λ} of n-dimensional
harmonic oscillator states. This set is a basis for the irrep λ of SU (n).

ĥ2 is invariant under SU (n−1) transformations block diagonal in the last (n−1)× (n−1)

entries. h3 is invariant under SU (n − 2) transformations block diagonal in the last
(n − 2) × (n − 2) entries and so forth.
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The highest weight state |λ0 . . . 0〉 is stable under the subgroup of transformation
H = U (n − 1) = SU (n − 1) ⊗ U (1), with the SU (n − 1) subgroup acting on modes 2
to n of the oscillator kets. This highest weight state can be constructed by tensoring λ copies
of the highest weight of the fundamental (1, 0, . . . , 0) representation:

|λ〉 = |1, 0, . . . , 0〉1 ⊗ |1, 0, . . . , 0〉2 ⊗ · · · ⊗ |1, 0, . . . , 0〉λ. (50)

Because |λ〉 is a permutation-symmetric factorized product of ‘single particle’ states, so is the
coherent state |ω〉 defined by

|ω〉 ≡ D(ω)|λ〉, ω ∈ SU (n)/U (n − 1). (51)

As such, |ω〉 displays maximal classical correlations. We can always find, for a given coherent
state, a parametrized family of operators, written as linear combination of generators, for which
the fluctuations of any element in the set will be invariant under transformations generated by
the stationary subgroup H. Moreover, the fluctuations of this operator reach their minimum
possible value, determined by the dimension of the representation space H, when evaluated
using coherent states.

Using ω as a shorthand for (α1, β1, . . . , αn−1, βn−1), a convenient realization of the coset
elements ω is given in terms of the sequence of subgroup transformations

D(ω) = Rn−1,n(α1, β1,−α1) . . . R23(α2, β2,−α2)R12(αn−1, βn−1,−αn−1), (52)

where Ri j(γ , τ, ζ ) is a transformation from the SUi j(2) subgroup with algebra spanned by
Ĉi j, Ĉji, [Ĉi j, Ĉji]. Ri j subgroup transformation only mixes modes i and j.

3.2. Possible types of correlations

Start with

|ω〉 = Rn−1,n(ω1) . . . R23(ωn−2)[R12(ωn−1)|λ, 0, . . . , 0〉] (53)

=
∑

p1

[Rn−1,n(ω1) . . . R23(ωn−2)|λ − p1, p1, 0, . . . , 0〉]D
1
2 λ
1
2 λ−p1,

1
2 λ

(ωn−1). (54)

The states

|ω1ω2 . . . ωn−2; p1〉 = Rn−1,n(ω1) . . . R23(ωn−2)|λ − p1, p1, 0, . . . , 0〉 (55)

are SU (n − 1)2,n coherent states for each different p1. Thus, we can write

|ω〉 =
λ∑

p1=0

|ω1ω2 . . . ωn−2; p1〉D
1
2 λ
1
2 λ−p1,

1
2 λ

(ωn−1) (56)

as a superposition of SU (n − 1) coherent states.
Alternatively, we also have

|ω〉 = Rn−1,n(α1, β1,−α1) . . . R34(αn−3, βn−3,−αn−3)|ωn−1;ωn−2〉
|ωn−1;ωn−2〉 = R23(ωn−2)R12(ωn−1)|λ〉

=
∑
p1 p2

D
1
2 p1
1
2 p1−p2,

1
2 p1

(ωn−2) Dλ/2
1
2 λ−p1,

1
2 λ

(ωn−1)|λ − p1, p1 − p2, p2, . . . , 0〉 (57)

with |ωn−1;ωn−2〉 an SU (3) coherent state, and so forth.
We may now envisage generating correlations with evolutions of the form

Uk(ξk) = exp(−iξk Hk(ĥk)) (58)

for some polynomial Hk at least quadratic in ĥk.
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The operator ĥ1 commutes with all SU (2) transformations of the type Rk−1,k(ω) except
R12. Thus, for Hamiltonians of the type H(ĥ1) polynomial in ĥ1, one will produce ‘pure’
SU (n) correlations, generalizing equation (19) to

U1(ξ1)|ω〉 =
∑

p1

[Rn−1,n(ωn−1,n) . . . R23(ω23)U1(ξ1)|λ − p1, p1, 0, . . . , 0〉]D
1
2 λ
1
2 λ−p, 1

2 λ
(ω1),

(59)

=
∑

p1

[e−iξ1H1((n−1)λ−np)|ω1ω2 . . . ωn−2; p1〉]D
1
2 λ
1
2 λ−p, 1

2 λ
(ω1), (60)

with |ω1ω2 . . . ωn−2; p1〉 given in equation (55) .
This kind of squeezing can be detected by using a family of observables of the form

K(η) = T (η)(Ĉ1n + Ĉn1)T −1(η) with T (η) ∈ H = U (n − 1). When evaluated using the
highest weight state |λ〉, the fluctuations of K(η) are independent of the parameters η and
equal λ. Thus, the shifted operator

K(ω; η) = D(ω)K(η)D−1(ω) (61)

will have fluctuations independent of η when evaluated in the coherent state D(ω)|λ〉. A state
|ψ〉 will be purely SU (n)-squeezed if there is some η∗ for which (�K(ω; η∗))2 < λ when
evaluated using |ψ〉.

For Hamiltonians polynomial in ĥ2, one will produce SU (n − 1)-type correlations, and
so recursively various types of squeezing can be achieved. In general, two Hamiltonians
Ĥi and Ĥj, invariant under different transformations, will induce inequivalent motions in
the SU (n)/U (n − 1) phase space, isomorphic to the sphere S2(n−1), and thus inequivalent
deformations of the initial distribution.

4. Conclusion

In this paper we have shown that correlations generated by Hamiltonians with different
invariance properties under subgroup transformations have an essentially different nature.
The differences clearly appear in the scaling behaviour for optimal squeezing times. For
systems with SU (n) symmetries, the fastest squeezing will occur when correlating SU (n − 1)

coherent states.
Our idea is that, in systems with higher symmetries, correlations between different types

of states are possible. We have shown how the symmetry of the Hamiltonian is related to the
type of correlations it generates. These differences are due to impossibility of transforming
the Hamiltonians from one to the other using unitary transformations.

In the case of SU (n) systems, we can identify different inequivalent deformations of
phase-space distributions with specific type of correlations between states labelled using the
canonical subgroup chain of equation (1), all the way from correlating coherent states of
SU (n − 1) to correlating individual states labelled by all links in the subgroup chain. In the
examples of this paper, using our parametrization of the S4 sphere, different deformations
generated by ĥ2

1 and ĥ2
2 (up to rigid translations), identified with different types of possible

correlations, correspond to obviously distinct trajectories along different azimuthal directions
only.

Although Hamiltonians invariant under different subgroups in principle produce different
types of trajectories in phase-space, the number of azimuthal angles needed in our
parametrization to described the classical orbits generated by such Hamiltonians strongly
depends on the position of the initial state. In the explicit example discussed in section 2.4.3,
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the orbits should involve both azimuthal angles but reduce to one-dimensional motion because
of the choice of initial state.

In order to observe the effect of two-dimensional evolution in SU (3) systems we consider
the dynamics generated by the sum of Hamiltonians H1 + H2. The phase space symbol of the
Hamiltonian is just WH1+H2 and the classical trajectories are

α1(t) = α1 −
√

(λ − 1)(λ + 4) cos β1sin2 (
1
2β2

)
t, (62)

α2(t) = α2 − 1
20

√
(λ − 1)(λ + 4)[38 − 5 cos β1 + 5 cos β2(36 + cos β1)]t. (63)

The minimum of WH1+H2 occurs at B1 = 1
2π and B2 = arccos(−19/90 ) therefore

|ω〉 = R23(0, B1, 0)R12(0, B2, 0)|λ00〉, (64)

cos β̄2 = 1
4

[
2
√

2
(
cos α2 cos 1

2β1 + cos(α1 + α2) sin 1
2β1

)
sin β2 sin B2

+ 4 cos α1 sin β1sin2 (
1
2β2

)
sin2 (

1
2 B2

) + cos β2 + cos B2 + 3 cos β2 cos B2 − 1
]

(65)

Wρω
(�) = Wλ(β̄2). (66)

Here the time-evolved Wigner function is obtained by the replacements α1 → α1(t) and
α2 → α2 (t) in the relation for cos β̄2. In this case the initial state is a true SU (3) coherent
state whereas in the H1 and H2 cases the initial state is an SU (2) coherent state.

We have exemplified our analysis by selecting only diagonal Hamiltonians; if more
general Hamiltonians are used, both types of squeezing will simultaneously occur and
the description of the trajectories in terms of the angles on S4 is more complicated, but
of course our conclusions are unaltered.
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Appendix. An closed form expression for C̃(σσ)(σσσ)0
ν1ν2ν3;ν1ν2ν3

Here we provide an explicit expression for the coefficients C̃(σσ )(σσσ )0
ν1ν2ν3;ν1ν2ν3

of equation (28). This
coefficient is, up to a phase, the SU (3) Clebsch–Gordan coefficient

C̃(σσ )(σσσ )0
ν1ν2ν3;ν1ν2ν3

∼
〈

(λ,0)

(ν1ν2ν3)Iν
; (0,λ)

(ν1ν2ν3)∗Iν

∣∣ (σ,σ )

(σσσ )0

〉
SU(3)

(A.1)

with (ν1ν2ν3)
∗ ≡ (λ − ν1, λ − ν2, λ − ν3).

We start by evaluating the Clebsch in two step. First, we note that

I1 =
∫

d�D(λ,0)

νIν ;(λ00)0(�)D(0,λ)

ν∗Iν ;τ 1
2 σ

(�)
(

D(σ,σ )

(σ,σ,σ )0;(2σ,σ,0) σ
2
(�)

)∗

= 128π5

(σ + 1)3

〈
(λ,0)

(ν1ν2ν3)Iν
; (0,λ)

(ν1ν2ν3)∗Iν

∣∣ (σ,σ )

(σσσ )0

〉
SU(3)

〈
(λ,0)

(λ00)0 ; (0,λ)

(σ,λ,λ−σ ) 1
2 σ

∣∣ (σ,σ )

(2σ,σ,0) 1
2 σ

〉
SU(3)

(A.2)

using the usual orthogonality and combination properties of the SU (3) D-functions.
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The integral can be evaluated analytically using the explicit expression of those D-
functions. We find

I1 = 4(2π)5

(σ + 1)2

1√
2σ + 1

( −1)ν3
2

(λ + 2)
√

λ + 1 − ν1

×
[√

λ + 1 − ν1

〈 1
2 λ

1
2 (2ν1−λ)

; 1
2 λ

1
2 (λ−2ν1)

∣∣ σ

0

〉
SU(2)

〈 1
2 λ
1
2 λ

; 1
2 λ

1
2 (2σ−λ)

∣∣ σ

σ

〉
SU(2)

−
√

ν1 + 1

λ + 1

〈 1
2 λ+1

1
2 (2ν1−λ)

; 1
2 λ

1
2 (λ−2ν1)

∣∣ σ

0

〉
SU(2)

〈 1
2 λ+1

1
2 λ

; 1
2 λ

1
2 (2σ−λ)

∣∣ σ

σ

〉
SU(2)

]
(A.3)

= 4(2π)5

(σ + 1)2 ( −1)ν3
2

(λ + 2)

√
λ!(2σ )!

(λ + 1 − ν1)(λ + σ + 1)!σ !

×
[√

σ (ν1 + 1)(λ − σ + 1)

(λ + σ + 2)(σ + 1)

〈 1
2 λ+1

1
2 (2ν1−λ)

; 1
2 λ

− 1
2 (2ν1−λ)

∣∣ σ

0

〉
SU(2)

+
√

λ + 1 − ν1

〈 1
2 λ

1
2 (2ν1−λ)

; 1
2 λ

− 1
2 (2ν1−λ)

∣∣ σ

0

〉
SU(2)

]
. (A.4)

We can obtain the square of the CG
〈

(λ,0)

(λ00)
; (0,λ)

(σ,λ,λ−σ )

∣∣ (σ,σ )

(2σ,σ,0) 1
2 σ

〉
SU(3)

from the integral

I2 =
∫

d�D(λ,0)

(λ,0,0)0;(λ,0,0)0(�)D(0,λ)

τ Iτ ;τ Iτ
(�)

(
D(σ,σ )

(2σ,σ,0) σ
2 ;(2σ,σ,0) σ

2
(�)

)∗

= 128π5

(σ + 1)3

∣∣〈 (λ,0)

(λ00)
; (0,λ)

(σ,λ,λ−σ )

∣∣ (σ,σ )

(2σ,σ,0) 1
2 σ

〉
SU(3)

∣∣2
, (A.5)

where τ = (σ, λ, λ − σ ), Iτ = σ
2 . We find, upon insertion of the explicit expressions for the

D-functions, that the resulting expression can be eventually simplified to

I2 = 256π5λ!(2σ + 1)!

(λ + σ + 2)!σ !(σ + 1)2
. (A.6)

Using the phase convention that
〈

(λ,0)

(λ00)
; (0,λ)

(σ,λ,λ−σ )

∣∣ (σ,σ )

(2σ,σ,0) 1
2 σ

〉
SU(3)

is positive, we thus find

〈
(λ,0)

(ν1ν2ν3)Iν
; (0,λ)

(ν1ν2ν3)∗Iν

∣∣ (σ,σ )

(σσσ )0

〉
SU(3)

=
√

σ !(λ + σ + 2)!

(2λ!(2σ + 1)!(σ + 1)

I1

128π5(σ + 1)3
. (A.7)

Finally, the coefficient C̃λ(σ,σ )
νIν

differs in general from the CG in equation (A.7) by a phase.
Direct calculation of C̃λ(σ,σ )

νIν
for the first few λs and σ s shows that

C̃λ(σ,σ )
νIν

= (−1)ν2

〈
(λ,0)

(ν1ν2ν3)Iν
; (0,λ)

(ν1ν2ν3)∗Iν

∣∣ (σ,σ )

(σσσ )0

〉
SU(3)

. (A.8)
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Korbicz J K, Gühne O, Lewenstein M, Häffner H, Roos C F and Blatt R 2006 Phys. Rev. A 74 052319

[5] Luis A and Korolkova N 2006 Phys. Rev. A 74 043817
[6] Shalm L K, Adamson R B A and Steinberg A M 2009 Nature 457 67
[7] Devi A R U, Wang X and Sanders B C 2003 Quantum Inform. Proc. 2 209
[8] Poulsen U V and Mølmer K 2001 Phys. Rev. A 64 013616

Wang X 2001 Opt. Commun. 200 277
Berry D W and Sanders B C 2002 New J. Phys. 4 8
Wang X and Sanders B C 2003 Phys. Rev. A 68 012101
Wang X and Mølmer K 2002 Eur. Phys. J. D 18 385

[9] Toth G, Knapp C, Gühne O and Briegel H J 2007 Phys. Rev. Lett. 99 250405
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