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We classify embeddings of the Poincaré algebra p(3, 1) into the rank 3 simple Lie
algebras. Up to inner automorphism, we show that there are exactly two embeddings
of p(3, 1) into sl(4,C), which are, however, related by an outer automorphism of
sl(4,C). Next, we show that there is a unique embedding of p(3, 1) into so(7,C), up
to inner automorphism, but no embeddings of p(3, 1) into sp(6,C). All embeddings
are explicitly described. As an application, we show that each irreducible highest
weight module of sl(4,C) (not necessarily finite-dimensional) remains indecompos-
able when restricted to p(3, 1), with respect to any embedding of p(3, 1) into sl(4,C).
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790415]

I. INTRODUCTION

The Poincaré group P(3, 1), also known as the inhomogeneous Lorentz group, is the Lie
group of isometries of Minkowski space-time. It is the noncompact, semidirect product group
P(3, 1) ∼= O(3, 1) � R4. The complexification of the Lie algebra of the Poincaré group is the
Poincaré algebra p(3, 1):

p(3, 1) ∼= (sl(2,C) ⊕ sl(2,C)) � (C2 ⊗ C2). (1)

The Abelian subalgebra C2 ⊗ C2 of p(3, 1) is an irreducible representation of the semisimple Lie
algebra sl(2,C) ⊕ sl(2,C).

In this article, we classify embeddings of the Poincaré algebra p(3, 1) into the rank 3 simple Lie
algebras. Up to inner automorphism, we show that there are exactly two embeddings of p(3, 1) into
sl(4,C), which are, however, related by an outer automorphism of sl(4,C) (Sec. VII). We then show
that there is a unique embedding of p(3, 1) into so(7,C), up to inner automorphism (Sec. VIII), but
no embeddings of p(3, 1) into sp(6,C) (Sec. IX).

In Sec. VII, we also show that each irreducible highest weight module of sl(4,C) (not neces-
sarily finite-dimensional) remains indecomposable when restricted to p(3, 1), with respect to any
embedding of p(3, 1) into sl(4,C): We thus create a large family of indecomposable representations
of p(3, 1). There has been considerable work on infinite-dimensional, irreducible representations of
p(3, 1) (see, for instance, Refs. 12 and 13), but very little on finite-dimensional, indecomposable
representations of p(3, 1) (one example is Ref. 11).

In Secs. III and IV we describe the semisimple Lie algebra sl(2,C) ⊕ sl(2,C), and the rank
3 simple Lie algebras, respectively. Section V contains additional definitions and notation that are
used in the following sections. In Sec. VI, we classify the embeddings of sl(2,C) ⊕ sl(2,C) into
the rank 3 simple Lie algebras, which will be used in the classification of embeddings of p(3, 1) into
the rank 3 simple Lie algebras. We begin with a discussion of the role of the Poincaré group and
algebra in physics in Sec. II.
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We end the section by noting that there is some interesting work on embeddings of the (real) Lie
algebra Lie(P(3, 1)) of the Poincaré group. Specifically, Doebner and Hennig3 classified embeddings
of Lie(P(3, 1)) into the real Lie algebra so(4, 2), up to inner automorphism.

Complexifying a representative of each equivalence class of embeddings of Lie(P(3, 1)) into
so(4, 2) gives us a set of embeddings of p(3, 1) into sl(4,C), which may or may not be pairwise
inequivalent. This list, of course, is not necessarily a complete list of embeddings of p(3, 1) into
sl(4,C): For instance, the complexification of any embedding of any real form of p(3, 1) into any
real form of sl(4,C) will produce an embedding of p(3, 1) into sl(4,C), which may be inequivalent
to those obtained from Lie(P(3, 1)) and so(4, 2).

II. THE POINCARÉ GROUP AND ALGEBRA IN PHYSICS

The Poincaré group is the basic symmetry group of special relativity. Applying the usual
argument of isotropy and homogeneity of spacetime, one concludes that Lagrangians (and the
theories they engender) should be invariant under Poincaré transformations. In addition to the basic
invariant x2 + y2 + z2 − (ct)2, the (Abelian) generators of spacetime translations can also be made
into the scalar p2

x + p2
y + p2

z − (E/c)2 = −(mc)2, with m the rest mass of a particle (from which
the famous formula follows for particles at rest, with px = py = pz = 0).

Unitary representations of the Poincaré group, studied using induced representation theory,
were the topic of the seminal work of Wigner.17 In an heroic paper,16 Ström obtained representations
of the Poincaré group by means of contractions of representations of the de Sitter group O(4, 1)
(see also Ref. 15).

The connections between pseudo-orthogonal groups and P(3, 1) have a long history. On the
one hand, P(3, 1) is not only a contraction of O(4, 1) but also of O(3, 2). On the other, P(3, 1) is
a subgroup of the conformal group SO(4, 2) (locally isomorphic to SU(2, 2), the largest symmetry
group of Maxwell’s equations from which basic postulate of special relativity, the invariance of the
speed of light c, follows). Infinite-dimensional, irreducible representations of SO(4, 2) and SU(2, 2)
which remain irreducible when restricted to P(3, 1) were studied in Refs. 12 and 13 and found to
describe 0-mass particles.

There is renewed interest in spacetime symmetries and the role of the Poincaré group (or rather,
the Poincaré algebra) in the context of the so–called “Doubly Special Relativity” (DSR) theory (see
the recent reports,1, 2, 8). The premise behind DSR is that, in addition to the speed of light c, there
should exist another fundamental invariant related to Planck–scale physics, which would lead to a
deformation of the Poincaré algebra.

III. THE SEMISIMPLE LIE ALGEBRA sl(2,C) ⊕ sl(2,C) AND ITS REPRESENTATIONS

The special linear algebra sl(2,C) is the Lie algebra of traceless 2 × 2 matrices with complex
entries. It is the Lie algebra of type A1. Recall that for each nonnegative integer n there is an
(n + 1)-dimensional, irreducible sl(2,C)-module V (n) (for a description of V (n) see Ref. 5 or
Ref. 7). Further, every finite-dimensional, irreducible sl(2,C)-module is equivalent to V (n) for
some nonnegative integer n.

The representations of sl(2,C) ⊕ sl(2,C) are constructed from those of sl(2,C). If V1 and V2

are sl(2,C)-modules, then V1 ⊗ V2 is an sl(2,C) ⊕ sl(2,C)-module with action

(L1, L2) · (v1 ⊗ v2) = (L1 · v1) ⊗ v2 + v1 ⊗ (L2 · v2). (2)

We have the following well-known theorem classifying the finite dimensional, irreducible
representations of sl(2,C) ⊕ sl(2,C) (see, for instance, Ref. 6).

Theorem 3.1: The finite-dimensional sl(2,C) ⊕ sl(2,C) representation V is irreducible if and
only if V ∼= V (n) ⊗ V (m) for some n, and m ∈ Z≥0, uniquely determined by V .
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Remark 3.2: Let V be a finite-dimensional p(3, 1)-module and consider V restricted to the
subalgebra sl(2,C) ⊕ sl(2,C). Since the category of finite-dimensional sl(2,C) ⊕ sl(2,C)-modules
is semisimple, V decomposes into irreducible sl(2,C) ⊕ sl(2,C)-modules.

IV. THE RANK 3 SIMPLE LIE ALGEBRAS AND THEIR REPRESENTATIONS

The special linear algebra sl(4,C) is the 15-dimensional Lie algebra of traceless 4 × 4 matrices
with complex entries. It is the simple Lie algebra of type A3. The special orthogonal algebra so(7,C),
of type B3 is the 21-dimensional simple Lie algebra of complex 7 × 7 matrices N satisfying Ntr

= − N. The symplectic algebra sp(6,C) is the 21-dimensional Lie algebra of 6 × 6 complex
matrices N satisfying K X tr K = X where K is the 6 × 6 matrix

K =
(

0 I

−I 0

)
. (3)

It is the simple Lie algebra of type C3. Note that the simple Lie algebra of type D3, namely so(6,C),
is isomorphic to sl(4,C).

We may define the rank 3 simple Lie algebra g by a set of generators {Hi, Xi, Yi}1 � i � 3 together
with the Chevalley-Serre relations:7

[Hi , Hj ] = 0, [Hi , X j ] = Mg

j i X j ,

[Hi , Y j ] = −Mg

j i Y j , [Xi , Y j ] = δi j Hi ,

(adXi )
1−Mg

j i (X j ) = 0, (adYi )
1−Mg

j i (Y j ) = 0, when i �= j,

(4)

where 1 � i, j � 3, and Mg is the Cartan matrix of g (see Ref. 7). The Xi, for 1 � i � 3, correspond
to the simple roots.

We now consider the representations of the simple Lie algebra g.
Let h be the Cartan subalgebra of g with basis H1, H2, H3, define αi , λi ∈ h∗ by αi (Hj ) = Mg

j i ,
and λi(Hj) = δij. The λi are the fundamental weights.

For each λ = m1λ1 + m2λ2 + m3λ3 ∈ h∗, with nonnegative integers m1, m2, m3, there exists
a finite-dimensional, irreducible g-module denoted Vg(λ), with highest weight λ, and every finite-
dimensional irreducible g-module is of this form, for some λ. The representations Vg(λi ) for 1 � i
� 3 are the fundamental representations.

The representation Vg(λ) is realized as the quotient of the universal enveloping algebra U(g) by
the left ideal, Jλ, generated by Xi, Hi − λ(Hi), Y 1+λ(Hi )

i , 1 � i � 3 (here the action of U(g) on itself
and on Vg(λ) is given by left multiplication). We will denote the element 1 + Jλ of Vg(λ) by ũ. Then
one can show that Vg(λ) is generated by {Yi1 · · · Yil ũ : l ∈ N0, i1, . . . , il ∈ {1, 2, 3}}. The weight of
Yi1 · · · Yil ũ is λ − �l

j=1αi j .

V. ADDITIONAL DEFINITIONS AND NOTATION

The following definitions and notation will be used in this article. Let g be a simple Lie algebra.

• Let Xai correspond to a simple root of g, for 1 ≤ ai ≤ rank(g). We then define

Xa1,a2,a3,...,ak ≡ [[. . . [[Xa1 , Xa2 ], Xa3 ], . . .], Xak ].

Ya1,a2,a3,...,ak is defined analogously.
• Let g′ be a subalgebra of g, and W ∈ g. We then define [W ]g′ to be the g′-submodule inside

g generated by the vector W . Given an embedding ϕ : sl(2,C) ⊕ sl(2,C) ↪→ g, we will be
interested in the subalgebra ϕ(sl(2,C) ⊕ sl(2,C)) of g. We shall abbreviate [W ]ϕ(sl(2,C)⊕sl(2,C))

to [W ]ϕ when no ambiguity arises.
• Let W1, . . . , Wm ∈ g. Then,

〈W1, . . . , Wm〉
is the subalgebra of g generated by W1, . . . ,Wm .
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• A lift of the embedding ϕ : sl(2,C) ⊕ sl(2,C) ↪→ g to p(3, 1) is an embedding ϕ̃ : p(3, 1) ↪→ g

such that ϕ̃ restricted to sl(2,C) ⊕ sl(2,C) is equal to ϕ. That is, ϕ̃|sl(2,C)⊕sl(2,C) = ϕ.
• Let ϕ and � be Lie algebra embeddings of g′ into g. Then ϕ and � are equivalent if there is an

inner automorphism ρ : g → g such that ϕ = ρ◦�, and we write

ϕ ∼ �.

Hence, our classification in this article is up to equivalence.
• Two embeddings ϕ and � of g′ into g are linearly equivalent if for each representation π :

g → gl(V ) the induced g′-representations π◦ϕ, π◦� are equivalent, and we write

ϕ ∼L �.

We define equivalence and linear equivalence of subalgebras much as we did for embeddings.

• Two subalgebras g′ and g′′ of g are equivalent if there is an inner automorphism ρ of g such
that ρ(g′) = g′′.

• Two subalgebras g′ and g′′ of g are linearly equivalent if for every representation π : g → gl(V )
the subalgebras ρ(g′), ρ(g′′) of gl(V ) are conjugate under GL(V ).

Clearly equivalence implies linear equivalence (for embeddings or subalgebras), but the
converse is not in general true.

VI. CLASSIFICATION OF EMBEDDINGS OF sl(2,C) ⊕ sl(2,C) INTO THE RANK 3
SIMPLE LIE ALGEBRAS

As an intermediate step to classifying the embeddings of p(3, 1) into the rank 3 simple Lie
algebras, we begin by classifying the embeddings of sl(2,C) ⊕ sl(2,C) into these same Lie algebras.
First, we explicitly construct several embeddings of sl(2,C) ⊕ sl(2,C) into each of the rank 3 simple
Lie algebras. In Theorem 6.6 below, we will show that these embeddings are pairwise inequivalent,
and form the basis for our classification of embeddings of sl(2,C) ⊕ sl(2,C) into the rank 3 simple
Lie algebras.

Let sl(2,C) ⊕ sl(2,C) be generated by positive root vectors E, E′ and negative root vectors F,
F′, so that sl(2,C) ∼= 〈E, F〉 ∼=〈E′, F′〉; and 〈E, F〉 ∩ 〈E′, F′〉 = 0. We first construct embeddings of
sl(2,C) ⊕ sl(2,C) into sl(4,C):

ϕA : sl(2,C) ⊕ sl(2,C) ↪→ sl(4,C)

E �→ X1

F �→ Y1

E ′ �→ X3

F ′ �→ Y3,

(5)

�A : sl(2,C) ⊕ sl(2,C) ↪→ sl(4,C)

E �→ X1 + X3

F �→ Y1 + Y3

E ′ �→ X4 + X5

F ′ �→ Y4 + Y5,

(6)

where

X4 = X2,1, X5 = X3,2, Y4 = −Y2,1, Y5 = −Y3,2. (7)

We remind the reader that, for instance, X2, 1 = [X2, X1], as defined in Sec. V.
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The following are embeddings of sl(2,C) ⊕ sl(2,C) into so(7,C).

ϕB : sl(2,C) ⊕ sl(2,C) ↪→ so(7,C)

E �→ X1

F �→ Y1

E ′ �→ X3

F ′ �→ Y3,

(8)

�B : sl(2,C) ⊕ sl(2,C) ↪→ so(7,C)

E �→ X1

F �→ Y1

E ′ �→ X9

F ′ �→ Y9,

(9)

ϑB : sl(2,C) ⊕ sl(2,C) ↪→ so(7,C)

E �→ X7 + Y2

F �→ X2 + Y7

E ′ �→ X6

F ′ �→ Y6,

(10)

ςB : sl(2,C) ⊕ sl(2,C) ↪→ so(7,C)

E �→ X4 + X5

F �→ Y4 + Y5

E ′ �→ Y8

F ′ �→ X8,

(11)

where

X4 = X1,2, X5 = X2,3, X6 = X3,2,1,

X7 = −1
2 X3,2,3, X8 = 1

2 X3,2,3,1, X9 = −1
2 X3,2,1,3,2,

Y8 = −1
2 Y3,2,3,1, Y9 = −1

2 Y3,2,1,3,2.

(12)

The following are embeddings of sl(2,C) ⊕ sl(2,C) into sp(6,C).

ϕC : sl(2,C) ⊕ sl(2,C) ↪→ sp(6,C)

E �→ X1

F �→ Y1

E ′ �→ X3

F ′ �→ Y3,

(13)

�C : sl(2,C) ⊕ sl(2,C) ↪→ sp(6,C)

E �→ X1 + X3

F �→ Y1 + Y3

E ′ �→ X4 + X5

F ′ �→ 2Y4 + 2Y5,

(14)
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ϑC : sl(2,C) ⊕ sl(2,C) ↪→ sp(6,C)

E �→ X3

F �→ Y3

E ′ �→ X9

F ′ �→ Y9,

(15)

ςC : sl(2,C) ⊕ sl(2,C) ↪→ sp(6,C)

E �→ X3

F �→ Y3

E ′ �→ X1 + X7

F ′ �→ 3Y1 + 4Y7,

(16)

where

X4 = X2,1, X5 = X3,2, X7 = 1
2 X3,2,2, X9 = 1

2 X1,2,3,2,1,

Y4 = −Y2,1, Y5 = −Y3,2, Y7 = 1
2 Y3,2,2, Y9 = 1

2 Y1,2,3,2,1.
(17)

The classification of embeddings of sl(2,C) ⊕ sl(2,C) into the rank 3 simple Lie algebras will
follow largely from Refs. 10 (see also Ref. 9) and 14:

Theorem 6.1 (Refs. 9 and 10): Up to equivalence, there are exactly two subalgebras isomorphic
to sl(2,C) ⊕ sl(2,C) inside sl(4,C), four subalgebras isomorphic to sl(2,C) ⊕ sl(2,C) inside
so(7,C), and four subalgebras isomorphic to sl(2,C) ⊕ sl(2,C) inside sp(6,C).

Theorem 6.2 (Theorem 2 of Ref. 14): Let g be a classical simple Lie algebra, h semisimple,
and ϕi : h ↪→ g, i = 1, 2, two embeddings. Also let ω be the standard representation of g. If
g � so(2n,C), then ϕ1 ∼ Lϕ2 ⇔ ω ◦ ϕ1 ∼ ω ◦ ϕ2.

Theorem 6.3 (Theorem 3 of Ref. 14): Let g ∼= sl(n,C), so(2n + 1,C), or sp(2n,C); h semisim-
ple; and ϕi : h ↪→ g, i = 1, 2, two embeddings. Then ϕ1 ∼ Lϕ2 ⇔ ϕ1 ∼ ϕ2.

Theorem 6.4: Let � and ϕ be embeddings of sl(2,C) ⊕ sl(2,C) into sl(4,C), so(7,C), or
sp(6,C). The subalgebras �(sl(2,C) ⊕ sl(2,C)) and ϕ(sl(2,C) ⊕ sl(2,C)) are inequivalent if and
only if � ◦ α �∼ϕ for all automorphisms α of sl(2,C) ⊕ sl(2,C).

Proof: (⇒) Suppose there is an automorphism α of sl(2,C) ⊕ sl(2,C) such that � ◦ α

∼ ϕ. Then, there is an inner automorphism β of sl(4,C), so(7,C), or sp(6,C), respectively,
such that �(α(sl(2,C) ⊕ sl(2,C))) = β(ϕ(sl(2,C) ⊕ sl(2,C))), as sets. Hence, the subalgebras
�(α(sl(2,C) ⊕ sl(2,C))) = �(sl(2,C) ⊕ sl(2,C)), and ϕ(sl(2,C) ⊕ sl(2,C)) are equivalent.

(⇐) Suppose that the subalgebras �(sl(2,C) ⊕ sl(2,C)) and ϕ(sl(2,C) ⊕ sl(2,C)) are equiva-
lent. Then, there exists an inner automorphism β of sl(4,C), so(7,C), or sp(6,C), respectively, such
that �(sl(2,C) ⊕ sl(2,C)) = β(ϕ(sl(2,C) ⊕ sl(2,C)), as sets. Then, �− 1◦β ◦ ϕ, with �− 1 the in-
verse of �: sl(2,C) ⊕ sl(2,C) → �(sl(2,C) ⊕ sl(2,C)), is an automorphism of sl(2,C) ⊕ sl(2,C),
and � ◦ (�− 1◦β ◦ ϕ) = β ◦ ϕ. Hence, �◦(�− 1◦β ◦ ϕ) ∼ ϕ. �

It is well-known that, up to inner automorphisms, the outer automorphisms of a semisimple
Lie algebra correspond to the automorphism group of its Dynkin diagram (Proposition D.40 of
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TABLE I. Classification of embeddings of sl(2,C) ⊕ sl(2,C) into the rank
3 simple Lie algebras up to equivalence.

Rank 3 simple Lie algebrag Embeddings sl(2,C) ⊕ sl(2,C) ↪→ g

sl(4,C) ϕA, �A

so(7,C) ϕB, ϕB ◦ ε, �B, ϑB, ςB, ςB ◦ ε

sp(6,C) ϕC, ϕC ◦ ε, �C, �C ◦ ε, ϑC, ςC, ςC ◦ ε

Ref. 5). Hence, any outer automorphism of sl(2,C) ⊕ sl(2,C) interchanges sl(2,C) components.
More specifically, we have the following theorem.

Theorem 6.5: Up to inner automorphism, there is a unique outer automorphism of sl(2,C)
⊕ sl(2,C), given by

ε : sl(2,C) ⊕ sl(2,C) → sl(2,C) ⊕ sl(2,C)

E �→ E ′

F �→ F ′

E ′ �→ E

F ′ �→ F.

(18)

Using the constructed embeddings and the five theorems above we can now classify the embed-
dings of sl(2,C) ⊕ sl(2,C) into the rank 3 simple Lie algebras.

Theorem 6.6: A complete set of inequivalent embeddings of sl(2,C) ⊕ sl(2,C) into sl(4,C)
is ϕA and �A. A complete set of inequivalent embeddings of sl(2,C) ⊕ sl(2,C) into so(7,C) is ϕB,
ϕB ◦ ε, �B, ϑB, ςB, and ςB ◦ ε. A complete set of inequivalent embeddings of sl(2,C) ⊕ sl(2,C) into
sp(6,C) is ϕC, ϕC ◦ ε, �C, �C ◦ ε, ϑC, ςC, and ςC ◦ ε. For clarity, this classification is summarized
in Table I.

Proof: Let ω be the standard representation of sl(4,C). We then have the following decompo-
sitions:

ω ◦ ϕA
∼= (V (1) ⊗ V (0)) ⊕ (V (0) ⊗ V (1)),

ω ◦ ϕA ◦ ε ∼= (V (0) ⊗ V (1)) ⊕ (V (1) ⊗ V (0)),

ω ◦ �A
∼= V (1) ⊗ V (1),

ω ◦ �A ◦ ε ∼= V (1) ⊗ V (1).

(19)

Hence, the subalgebras ϕA(sl(2,C) ⊕ sl(2,C)) and �A(sl(2,C) ⊕ sl(2,C)) are inequivalent by
Theorems 6.4 and 6.5. By Theorem 6.1 they form a complete list of inequivalent sl(2,C) ⊕ sl(2,C)
subalgebras in sl(4,C).

Obtaining a classification of embeddings from the classification of subalgebras is achieved by
considering any embedding into each of these subalgebras together with their compositions with the
unique outer automorphism of sl(2,C) ⊕ sl(2,C). Hence, considering Eq. (19) and Theorems 6.2
and 6.3, ϕA and �A is a complete set of inequivalent embeddings of sl(2,C) ⊕ sl(2,C) into sl(4,C).
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Let ω be the standard representation of so(7,C). We have the following decompositions:

ω ◦ ϕB
∼= (V (0) ⊗ V (2)) ⊕ (2V (1) ⊗ V (0)),

ω ◦ ϕB ◦ ε ∼= (V (2) ⊗ V (0)) ⊕ (2V (0) ⊗ V (1)),

ω ◦ �B
∼= (V (1) ⊗ V (1)) ⊕ (3V (0) ⊗ V (0)),

ω ◦ �B ◦ ε ∼= (V (1) ⊗ V (1)) ⊕ (3V (0) ⊗ V (0)),

ω ◦ ϑB
∼= (V (2) ⊗ V (0)) ⊕ (V (0) ⊗ V (2))

⊕ (V (0) ⊗ V (0)),

ω ◦ ϑB ◦ ε ∼= (V (0) ⊗ V (2)) ⊕ (V (2) ⊗ V (0))

⊕ (V (0) ⊗ V (0)),

ω ◦ ςB
∼= (V (2) ⊗ V (0)) ⊕ (V (1) ⊗ V (1)),

ω ◦ ςB ◦ ε ∼= (V (0) ⊗ V (2)) ⊕ (V (1) ⊗ V (1)).

(20)

Using reasoning as in the above case, ϕB, ϕB ◦ ε, �B, ϑB, ςB, and ςB ◦ ε is a complete set of
inequivalent embeddings of sl(2,C) ⊕ sl(2,C) into so(7,C).

Let ω be the standard representation of sp(6,C). We have the following decompositions:

ω ◦ ϕC
∼= (2V (1) ⊗ V (0)) ⊕ (V (0) ⊗ V (1)),

ω ◦ ϕC ◦ ε ∼= (2V (0) ⊗ V (1)) ⊕ (V (1) ⊗ V (0)),

ω ◦ �C
∼= (V (1) ⊗ V (2)),

ω ◦ �C ◦ ε ∼= (V (2) ⊗ V (1)),

ω ◦ ϑC
∼= (V (1) ⊗ V (0)) ⊕ (V (0) ⊗ V (1))

⊕ (2V (0) ⊗ V (0)),

ω ◦ ϑC ◦ ε ∼= (V (0) ⊗ V (1)) ⊕ (V (1) ⊗ V (0))

⊕ (2V (0) ⊗ V (0)),

ω ◦ ςC
∼= (V (0) ⊗ V (3)) ⊕ (V (1) ⊗ V (0)),

ω ◦ ςC ◦ ε ∼= (V (3) ⊗ V (0)) ⊕ (V (0) ⊗ V (1)).

(21)

Using reasoning as in the above case, the result for sp(6,C) follows. �

VII. CLASSIFICATION OF EMBEDDINGS OF p(3, 1) INTO sl(4,C)

In this section we classify the embeddings of p(3, 1) into sl(4,C), up to equivalence. We will
use the results of Sec. VI as summarized in Theorem 6.6.

We first consider the decomposition of sl(4,C) with respect to the adjoint action of
ϕA(sl(2,C) ⊕ sl(2,C)):

sl(4,C) ∼=ϕA [X1]ϕA ⊕ [X3]ϕA ⊕
[X3,2,1]ϕA ⊕ [Y2]ϕA ⊕
[H1 + 2H2 + H3]ϕA

∼=ϕA V (2) ⊗ V (0) ⊕ V (0) ⊗ V (2) ⊕
2V (1) ⊗ V (1) ⊕ V (0) ⊗ V (0).

(22)

Lemma 7.1: The sl(4,C)-subspaces [X3,2,1]ϕA and [Y2]ϕA are Abelian subalgebras of sl(4,C).
However, [X3,2,1 + βY2]ϕA is not Abelian for any β ∈ C∗.

Proof: The following is a basis of [X3,2,1]ϕA :

X3,2,1, [Y1, X3,2,1], [Y3, [Y1, X3,2,1]], [Y3, X3,2,1]. (23)
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Direct calculation shows

[[X3,2,1]ϕA , X3,2,1] = 0. (24)

Equation (24) together with the Jacobi identity imply

[[X3,2,1]ϕA , [X3,2,1]ϕA ] = {0}, (25)

where [[X3,2,1]ϕA , [X3,2,1]ϕA ] is interpreted to be the set of all products [L, L′] such the L , L ′

∈ [X3,2,1]ϕA . Hence, [X3,2,1]ϕA is an Abelian subalgebra of sl(4,C). In a similar fashion, we show
[Y2]ϕA is Abelian.

Note that [Y1, X3,2,1 + βY2] ∈ [X3,2,1 + βY2]ϕA . Since

[X3,2,1 + βY2, [Y1, X3,2,1 + βY2]] = 2β X3, (26)

we have that [X3,2,1 + βY2]ϕA is not Abelian if β �= 0. �

Note that sl(2,C) ⊕ sl(2,C) ∼= V (2) ⊗ V (0) ⊕ V (0) ⊗ V (2), and C2 ⊗ C2 ∼= V (1) ⊗ V (1) as
sl(2,C) ⊕ sl(2,C)-representations. Hence, by Lemma 7.1, the following define all lifts of ϕA to
p(3, 1),

ϕ̃α
A,X3,2,1

: p(3, 1) ↪→ sl(4,C)

u �→ αX3,2,1,

ϕ̃α
A,Y2

: p(3, 1) ↪→ sl(4,C)

u �→ αY2,

(27)

where u is a highest weight vector of C2 ⊗ C2, and α ∈ C∗.
Consider

sl(4,C) ∼=�A [X1 + X3]�A ⊕ [X4 + X5]�A ⊕
[X6]�A

∼=�A V (2) ⊗ V (0) ⊕ V (0) ⊗ V (2) ⊕
V (2) ⊗ V (2).

(28)

The decomposition is computed by identifying highest weight vectors, and then considering di-
mensions of sl(4,C) and of sl(2,C) ⊕ sl(2,C)-modules. Since V (1) ⊗ V (1) does not occur in the
decomposition, �A cannot be lifted to an embedding of p(3, 1) into sl(4,C). Hence, by Theorem
6.6, ϕ̃α

A,X3,2,1
and ϕ̃α

A,Y2
define all embeddings of p(3, 1) into sl(4,C), where α ∈ C∗.

Theorem 7.2: A complete set of inequivalent embeddings of p(3, 1) into sl(4,C) is given by
ϕ̃1

A,X3,2,1
and ϕ̃1

A,Y2
. Although ϕ̃1

A,X3,2,1
and ϕ̃1

A,Y2
are not equivalent, they are related by an outer

automorphism of sl(4,C): That is, there exits an sl(4,C) outer automorphism ρ such that ρ ◦ ϕ̃1
A,Y2

= ϕ̃1
A,X3,2,1

.

Proof: For all α, β ∈ C∗, define an inner automorphism ρα,β : sl(4,C) → sl(4,C) as follows

X1 �→ X1, Y1 �→ Y1,

X2 �→ β

α
X2, Y2 �→ α

β
Y2,

X3 �→ X3, Y3 �→ Y3.

(29)

We then have ρα,β ◦ ϕ̃α
A,X3,2,1

= ϕ̃
β

A,X3,2,1
, so that ϕ̃α

A,X3,2,1
∼ ϕ̃

β

A,X3,2,1
. Similarly ϕ̃α

A,Y2
∼ ϕ̃

β

A,Y2
.

It now only remains to show ϕ̃1
A,X3,2,1

� ϕ̃1
A,Y2

. By way of contradiction, suppose ϕ̃1
A,X3,2,1

∼ ϕ̃1
A,Y2

.
Let ρ : sl(4,C) → sl(4,C) be an inner automorphism of sl(4,C) such that

ρ ◦ ϕ̃1
A,Y2

= ϕ̃1
A,X3,2,1

, (30)

which implies

ρ(Y2) = X3,2,1. (31)
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The automorphism ρ must send a highest (respectively lowest) weight vector to a highest (re-
spectively, lowest) weight vector of the same weight with respect to the adjoint action of
ϕA(sl(2,C) ⊕ sl(2,C)). Thus

ρ(H1 + 2H2 + H3) = β(H1 + 2H2 + H3),

ρ(X2) = γ Y3,2,1 + γ ′ X2,
(32)

for β ∈ C∗, and γ , γ ′ not both zero. Consider

ρ([H1 + 2H2 + H3, Y2]) = −2ρ(Y2)

= −2X3,2,1,

[ρ(H1 + 2H2 + H3), ρ(Y2)] = [β(H1 + 2H2 + H3), X3,2,1]

= 2β X3,2,1,

(33)

hence, since ρ is a Lie algebra homomorphism, β = − 1. Thus

ρ(H1 + 2H2 + H3) = −(H1 + 2H2 + H3). (34)

Consider

ρ([H1 + 2H2 + H3, X2]) = 2γ Y3,2,1 + 2γ ′ X2,

[ρ(H1 + 2H2 + H3), ρ(X2)] = 2γ Y3,2,1 − 2γ ′ X2.
(35)

Hence γ ′ = 0 so that

ρ(X2) = γ Y3,2,1. (36)

Consider

ρ([X2, Y2]) = ρ(H2),

[ρ(X2), ρ(Y2)] = [γ Y3,2,1, X3,2,1] = −γ (H1 + H2 + H3),
(37)

so that ρ(H2) = − γ (H1 + H2 + H3). Consider

ρ([H2, X2]) = 2γ Y3,2,1

[ρ(H2), ρ(X2)] = [−γ (H1 + H2 + H3), γ Y3,2,1]

= 2γ 2Y3,2,1,

(38)

so that γ = 1. Hence ρ is defined by

ρ : X1 �→ X1, Y1 �→ Y1,

X2 �→ Y3,2,1, Y2 �→ X3,2,1,

X3 �→ X3, Y3 �→ Y3.

(39)

The outer automorphisms of sl(4,C) correspond to the group of automorphisms of its Dynkin
diagram (Proposition D.40 of Ref. 5]. More specifically, sl(4,C) has a unique outer automorphism
ρ ′ that may defined by

ρ ′ : X1 �→ X3, Y1 �→ Y3,

X2 �→ X2, Y2 �→ Y2,

X3 �→ X1, Y3 �→ Y1.

(40)

Let ω be the standard representation of sl(4,C); then, using Eqs. (39) and (40), we have the following

ω ◦ ρ ∼= V (λ3),

ω ◦ ρ ′ ∼= V (λ3).
(41)
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Hence, Theorems 6.2 and 6.3 imply that ρ ∼ ρ ′, which implies that ρ is an outer automorphism, a
contradiction. Hence, ϕ̃1

A,X3,2,1
�∼ϕ̃1

A,Y2
. However, we have also shown that ρ ◦ ϕ̃1

A,Y2
= ϕ̃1

A,X3,2,1
, for

the outer automorphism ρ of sl(4,C) defined in Eq. (40). �

We close the section by considering the irreducible representations of sl(4,C) restricted to
p(3, 1) under any embedding in the following theorem.

Theorem 7.3: Every irreducible highest weight module of sl(4,C) (not necessarily finite-
dimensional) remains indecomposable when restricted to p(3, 1) with respect to any embedding of
p(3, 1) into sl(4,C).

Proof: The theorem follows immediately from the observation that the image of p(3, 1) under
any embedding into sl(4,C), all of which were identified in Theorem 7.2, contains all positive or all
negative root vectors of sl(4,C) (see, for instance, Ref. 4); thus its proof is omitted. �

VIII. CLASSIFICATION OF EMBEDDINGS OF p(3, 1) INTO so(7,C)

In this section we classify the embeddings of p(3, 1) into so(7,C), up to equivalence. We will
use the results of Sec. VI as summarized in Theorem 6.6.

We first consider the decomposition of so(7,C) with respect to the adjoint action of
ϕB(sl(2,C) ⊕ sl(2,C)), ϕB ◦ ε(sl(2,C) ⊕ sl(2,C)), and ϑ(sl(2,C) ⊕ sl(2,C)), respectively:

so(7,C) ∼=ϕB [X1]ϕB ⊕ [X3]ϕB ⊕
[X8]ϕB ⊕ [Y2]ϕB ⊕
[X9]ϕB ⊕ [Y9]ϕB ⊕
[H ]ϕB

∼=ϕB V (2) ⊗ V (0) ⊕ V (0) ⊗ V (2) ⊕
2V (1) ⊗ V (2) ⊕ 3V (0) ⊗ V (0),

(42)

so(7,C) ∼=ϕB◦ε [X1]ϕB◦ε ⊕ [X3]ϕB◦ε ⊕
[X8]ϕB◦ε ⊕ [Y2]ϕB◦ε ⊕
[X9]ϕB◦ε ⊕ [Y9]ϕB◦ε ⊕
[H ]ϕB

∼=ϕB◦ε V (0) ⊗ V (2) ⊕ V (2) ⊗ V (0) ⊕
2V (2) ⊗ V (1) ⊕ 3V (0) ⊗ V (0),

(43)

where H = X1 + 2X2 + X3,

so(7,C) ∼=ϑB [X8]ϑB ⊕ [X7]ϑB ⊕
[Y2]ϑB ⊕ [Y1 + Y9]ϑB ⊕
[X6]ϑB

∼=ϑB V (2) ⊗ V (2) ⊕ 2V (2) ⊗ V (0) ⊕
2V (0) ⊗ V (2).

(44)

Since there is no C2 ⊗ C2 ∼= V (1) ⊗ V (1) component in any of the above decompositions, we may
not lift the embedding ϕB, ϕB ◦ ε, or ϑB to p(3, 1).
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Next we consider the decomposition of so(7,C) with respect to the adjoint action of
ςB(sl(2,C) ⊕ sl(2,C)), and ςB ◦ ε(sl(2,C) ⊕ sl(2,C)):

so(7,C) ∼=ςB [X5]ςB ⊕ [X4]ςB ⊕
[Y8]ςB ⊕ [2Y1 + Y3]ςB ⊕
[X2]ςB

∼=ςB 2V (2) ⊗ V (0) ⊕ V (0) ⊗ V (2) ⊕
V (1) ⊗ V (1) ⊕ V (3) ⊗ V (1),

(45)

so(7,C) ∼=ςB◦ε [X5]ςB◦ε ⊕ [X4]ςB◦ε ⊕
[Y8]ςB◦ε ⊕ [2Y1 + Y3]ςB◦ε ⊕
[X2]ςB◦ε

∼=ςB◦ε 2V (0) ⊗ V (2) ⊕ V (2) ⊗ V (0) ⊕
V (1) ⊗ V (1) ⊕ V (1) ⊗ V (3).

(46)

Lemma 8.1: The so(7,C) subspaces [2Y1 + Y3]ςB and [2Y1 + Y3]ςB◦ε are not Abelian.

Proof: Note that [X8, 2Y1 + Y3] ∈ [2Y1 + Y3]ςB and [2Y1 + Y3]ςB◦ε. Since

[[X8, 2Y1 + Y3], 2Y1 + Y3] = 2X4 − 4X5 �= 0, (47)

we have that [2Y1 + Y3]ςB and [2Y1 + Y3]ςB◦ε are not Abelian. �
Since, by Lemma 8.1, the V (1) ⊗ V (1) component in each of the above decompositions is not

Abelian, we cannot lift either ςB or ςB ◦ ε to p(3, 1).
Finally, we consider the decomposition of so(7,C) with respect to the adjoint action of

�B(sl(2,C) ⊕ sl(2,C)):

so(7,C) ∼=�B [X1]�B ⊕ [X3]�B ⊕
[Y3]�B ⊕ [H3]�B ⊕
[X4]�B ⊕ [X6]�B ⊕
[X8]�B ⊕ [X9]�B

∼=�B V (2) ⊗ V (0) ⊕ 3V (0) ⊗ V (0) ⊕
3V (1) ⊗ V (1) ⊕ V (0) ⊗ V (2).

(48)

Lemma 8.2: The so(7,C)-subspace [β X4 + β ′ X6 + β ′′ X8]�B is Abelian if and only if (β ′)2

= β ′′β, where β, β ′, β ′′ ∈ C.

Proof: The following is a basis of [β X4 + β ′ X6 + β ′′ X8]�B :

β X4 + β ′ X6 + β ′′ X8, [Y1, β X4 + β ′ X6 + β ′′ X8],

[Y9, [Y1, β X4 + β ′ X6 + β ′′ X8]], [Y9, β X4 + β ′ X6 + β ′′ X8].
(49)

Direct calculation shows that a basis of [[β X4 + β ′ X6 + β ′′ X8]�B , β X4 + β ′ X6 + β ′′ X8] is

(ββ ′′ − (β ′)2)X9,

2((β ′)2 − β ′′β)(H1 + H2) + ((β ′)2 − ββ ′′)H3,

(ββ ′′ − (β ′)2)X1.

(50)

Hence,
[[β X4 + β ′ X6 + β ′′ X8]�B , β X4 + β ′ X6 + β ′′ X8] = 0

⇐⇒ (β ′)2 = β ′′β.
(51)
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By the Jacobi identity,

[[β X4 + β ′ X6 + β ′′ X8]�B , β X4 + β ′ X6 + β ′′ X8] = 0

⇐⇒ [[β X4 + β ′ X6 + β ′′ X8]�B , [β X4 + β ′ X6 + β ′′ X8]�B ] = 0.
(52)

By Eqs. (51) and (52) the result follows. �

Note that sl(2,C) ⊕ sl(2,C) ∼= V (2) ⊗ V (0) ⊕ V (0) ⊗ V (2), and C2 ⊗ C2 ∼= V (1) ⊗ V (1) as
sl(2,C) ⊕ sl(2,C)-representations. Hence, by Theorem 6.6 and Lemma 8.2, the following define
all embeddings of p(3, 1) into so(7,C),

�̃
,β,β ′,β ′′
B : p(3, 1) ↪→ so(7,C)

u �→ β X4 + β ′ X6 + β ′′ X8,
(53)

where u is a highest weight vector of C2 ⊗ C2, and ββ ′′ = (β ′)2, with β, β ′, β ′′ not all zero.

Lemma 8.3: Every embedding of p(3, 1) into so(7,C) is equivalent to �̃
1,γ,γ 2

B for some γ ∈ C.

Proof: Since we cannot lift ϕB, ϕ ◦ ε, ϑB, ςB, or ςB ◦ ε to p(3, 1), Theorem 6.6 implies that
each embedding of p(3, 1) into so(7,C) must come from a lift of �B. That is, considering Lemma
8.2, each lift of p(3, 1) into so(7,C) is equivalent to �

β,β ′,β ′′
B for some β, β ′, β ′′ ∈ C such that

ββ ′′ = (β ′)2.

The result will follow by showing that if β �= 0, then �
β,β ′,β ′′
B ∼ �

1,γ,γ 2

B for some γ ∈ C; �
0,0,β ′′
B

∼ �
1,0,0
B ; and by noting that an inner automorphism of so(7,C) will send an Abelian subalgebra to

an Abelian subalgebra.

We first show that if β �= 0, then �
β,β ′,β ′′
B ∼ �

1,γ,γ 2

B for some γ ∈ C. Define an inner automor-
phism ρ of so(7,C) as follows:

X1 �→ X1, Y1 �→ Y1,

X2 �→ 1
β

X2, Y2 �→ βY2,

X3 �→ β X3, Y3 �→ 1
β

Y3.

(54)

We then have ρ ◦ �̃
β,β ′,β ′′
B = �̃

1,β ′,ββ ′′
B = �̃

1,β ′,(β ′)2

B .

We now show that �
0,0,β ′′
B ∼ �

1,0,0
B . Define an inner automorphism ρ of so(7,C) as follows:

X1 �→ X1, Y1 �→ Y1,

X2 �→ β ′′ X7, Y2 �→ 1
β ′′ Y7,

X3 �→ 1
β ′′ Y3, Y3 �→ β ′′ X3.

(55)

It follows that ρ ◦ �̃
0,0,β ′′
B = �̃

1,0,0
B . �

In Proposition 8.5 below we show that �̃
1,λ,λ2

B ∼ �̃
1,γ,γ 2

B . This will complete our classification,
as recorded in Theorem 8.6. In order to facilitate the proof of Proposition 8.5, we need an additional
proposition, and an explicit realization of so(7,C). We first introduce terminology.

For u, v ∈ C3, u =

⎛⎜⎜⎝
u1

u2

u3

⎞⎟⎟⎠, v =

⎛⎜⎜⎝
v1

v2

v3

⎞⎟⎟⎠, we consider the “dot product” u · v = utr v = ∑
i uivi .

A “null vector” is a vector u ∈ C3 such that u · u = 0.

Proposition 8.4: If u, v ∈ C3 are nonzero null vectors, then there exists ω ∈ SO(3)C such that
ωu = v.
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Proof: It will suffice to prove that given any nonzero null vector u ∈ C3, then there exists

ω ∈ SO(3)C such that ω

⎛⎜⎝ 1

i

0

⎞⎟⎠ = u. This shows that the nonzero null vectors in C3 comprise a

single SO(3)C orbit.
We write u = x + iy, with x, y ∈ R3. Then 0 = u · u = x · x − y · y + 2ix · y. In particular,

we must have x · x = y · y and x · y = 0. Suppose x · x = a2, for some 0 �= a ∈ R.
Then 1

a x and 1
a y are orthogonal unit vectors in R3, so there exists ω′ ∈ SO(3)R with these as

its first two columns. In particular then, ω′(ae1 + aie2) = u.

Now, letting α = 1
2 (a + 1

a ), β = 1
2i (a − 1

a ), it is easy to show that ω′′ =

⎛⎜⎝ α β 0

−β α 0

0 0 1

⎞⎟⎠ is an

element of SO(3)C and that ω′′

⎛⎜⎝ 1

i

0

⎞⎟⎠ =

⎛⎜⎝ a

ai

0

⎞⎟⎠.

Letting ω = ω′ω′′, we find that ω

⎛⎜⎝ 1

i

0

⎞⎟⎠ = u, as required. �

Regarding so(7,C) as the group of 7 × 7 skew symmetric complex matrices, it is possible to
construct a Chevalley basis explicitly.

Define H =
(

0 −i

i 0

)
E =

(
1 −i

i 1

)
, Z =

(
1

i

)
, Ē =

(
1 i

−i 1

)
, Z̄ =

(
1

−i

)
.

Then, writing elements of so(7,C) in block form, with rows and columns grouped in blocks of
sizes 2, 2, 2, 1, it is possible to define various elements as follows:

H1 =

⎛⎜⎜⎝
H 0 0 0
0 −H 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠, H2 =

⎛⎜⎜⎝
0 0 0 0
0 H 0 0
0 0 −H 0
0 0 0 0

⎞⎟⎟⎠,

H3 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 2H 0
0 0 0 0

⎞⎟⎟⎠, X1 = 1
2

⎛⎜⎜⎝
0 E 0 0

−Etr 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠,

X2 = 1
2

⎛⎜⎜⎝
0 0 0 0
0 0 E 0
0 −Etr 0 0
0 0 0 0

⎞⎟⎟⎠, X3 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 Z
0 0 −Zt 0

⎞⎟⎟⎠,

Y1 = 1
2

⎛⎜⎜⎝
0 −Ē 0 0

Ē tr 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠, Y2 = 1
2

⎛⎜⎜⎝
0 0 0 0
0 0 −Ē 0
0 Ē tr 0 0
0 0 0 0

⎞⎟⎟⎠,

Y3 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −Z̄
0 0 Z̄ tr 0

⎞⎟⎟⎠.

(56)
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In each case, the blocks are 2 × 2, except for the last row and last column, which are a single row
and a single column. The bottom right “block” is a single entry.

The remaining X’s and Y’s in the Chevalley basis are formed by taking commutators of these,

as partially described in Eq. (12). In particular, with K =
(

1 i
i −1

)
, K̄ =

(
1 −i
−i −1

)
,

X9 = 1
2

⎛⎜⎜⎜⎜⎝
0 −K 0 0

K 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎠, Y9 = 1
2

⎛⎜⎜⎜⎜⎝
0 K̄ 0 0

−K̄ 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎠. (57)

Proposition 8.5: Let λ, γ ∈ C. Then �̃
1,λ,λ2

B ∼ �̃
1,γ,γ 2

B .

Proof: Using the realization above, it is easy to see that the image of sl(2,C) ⊕ sl(2,C) under
any of the embeddings �̃

1,λ,λ2

B is the 4 × 4 block in the upper left corner of so(7,C).
Then, using Eq. (53), it is easy to check that, in (4, 3) block form:

Uλ = �̃
1,λ,λ2

B (u) =
(

04×4 −Atr

A 03×3

)
, (58)

where A is the 3 × 4 matrix

⎛⎜⎜⎝
v1 iv1 0 0

v3 iv2 0 0

v3 iv3 0 0

⎞⎟⎟⎠, with

v =

⎛⎜⎜⎝
v1

v3

v3

⎞⎟⎟⎠ = vλ =

⎛⎜⎜⎝
− 1

2 + 1
2λ2

i
2 + i

2λ2

−λ

⎞⎟⎟⎠. (59)

Note that vλ is a nonzero null vector, for any λ ∈ C.
Now, given λ, γ ∈ C, we know that there is ω ∈ SO(3)C such that ωvλ = vγ .

Let � =
(

id4×4 0

0 ω

)
. Then � ∈ SO(7)C , � commutes with �̃

1,λ,λ2

B (sl(2,C) ⊕ sl(2,C)), and

�Uλ�
− 1 = Uγ . Hence � intertwines the two embeddings, proving that �̃

1,λ,λ2

B ∼ �̃
1,γ,γ 2

B . �

Lemma 8.3 and Proposition 8.5 imply the following theorem, which classifies the embeddings
of p(3, 1) into so(7,C).

Theorem 8.6: The embedding �̃
1,0,0
B is the unique embedding of p(3, 1) into so(7,C), up to

equivalence.

Remark 8.7: One could consider the irreducible representations of so(7,C) restricted to p(3, 1)
under any embedding, much as we did in the above section with embeddings of p(3, 1) into sl(4,C).
It is an open question whether irreducible representation of so(7,C) restricted to p(3, 1) remain
indecomposable with respect to a given embedding. We note that the technique of the proof of
Theorem 7.3 cannot be applied in this case since the number of positive roots of sl(2,C) ⊕ sl(2,C)
plus the dimension of C2 ⊗ C2 is less than the number of positive roots of so(7,C).

IX. NO EMBEDDINGS OF p(3, 1) INTO sp(6,C)

In this section we show that there are no embeddings of p(3, 1) into sp(6,C). We begin by con-
sidering the decomposition of sp(6,C) with respect to the adjoint action of �C (sl(2,C) ⊕ sl(2,C)),
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�C ◦ ε(sl(2,C) ⊕ sl(2,C)), ςC (sl(2,C) ⊕ sl(2,C)), or ςC ◦ ε(sl(2,C) ⊕ sl(2,C)), respectively:

sp(6,C) ∼=�C [X1 + X3]�C ⊕ [X4 + X5]�C ⊕
[X9]�C

∼=�C V (2) ⊗ V (0) ⊕ V (0) ⊗ V (2) ⊕
V (2) ⊗ V (4),

(60)

sp(6,C) ∼=�C ◦ε [X1 + X3]�C ◦ε ⊕ [X4 + X5]�C ◦ε ⊕
[X9]�C ◦ε

∼=�C ◦ε V (0) ⊗ V (2) ⊕ V (2) ⊗ V (0) ⊕
V (4) ⊗ V (2).

(61)

sp(6,C) ∼=ςC [X3]ςC ⊕ [X6]ςC ⊕
[X9]ςC ⊕ [X1 + X7]ςC

∼=ςC V (2) ⊗ V (0) ⊕ V (1) ⊗ V (3) ⊕
V (0) ⊗ V (6) ⊕ V (0) ⊗ V (2),

(62)

sp(6,C) ∼=ςC ◦ε [X3]ςC ◦ε ⊕ [X6]ςC ◦ε ⊕
[X9]ςC ◦ε ⊕ [X1 + X7]ςC ◦ε

∼=ςC ◦ε V (0) ⊗ V (2) ⊕ V (3) ⊗ V (1) ⊕
V (6) ⊗ V (0) ⊕ V (2) ⊗ V (0).

(63)

Since V (1) ⊗ V (1) does not occur in any of the above decompositions, we cannot lift �C, �C ◦ ε,
ςC, or ςC ◦ ε to p(3, 1).

We now consider the decomposition of sp(6,C) with respect to the adjoint action of
ϑC (sl(2,C) ⊕ sl(2,C)):

sp(6,C) ∼=ϑC [X5] ⊕ [Y2] ⊕
[X1] ⊕ [X8] ⊕
[X6] ⊕ [X9] ⊕
[X3] ⊕ [X7] ⊕
[Y7] ⊕ [H2 + H3]

∼=ϑC 2V (1) ⊗ V (0) ⊕ 2V (0) ⊗ V (1) ⊕
V (1) ⊗ V (1) ⊕ V (0) ⊗ V (2) ⊕
V (2) ⊗ V (0) ⊕ 3V (0) ⊗ V (0).

(64)

Lemma 9.1: [X6]ϑC is not Abelian.

Proof: Note that X6, and [Y3, [Y9, X6]] ∈ [X6]ϑC , however [X6, [Y3, [Y9, X6]]] = − H1 − H2

− 2H3 �= 0. �

Since [X6]ϑC
∼= V (1) ⊗ V (1), and V (1) ⊗ V (1) has multiplicity 1 in the decomposition of

Eq. (64), Lemma 9.1 implies that ϑC cannot be lifted to p(3, 1).
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We now consider the decomposition of sp(6,C) with respect to the adjoint action of
ϕC (sl(2,C) ⊕ sl(2,C)) and ϕC ◦ ε(sl(2,C) ⊕ sl(2,C)), respectively:

sp(6,C) ∼=ϕC [X1]ϕC ⊕ [X3]ϕC ⊕
[X9]ϕC ⊕ [Y7]ϕC ⊕
[X6]ϕC ⊕ [Y2]ϕC ⊕
[H ]ϕC

∼=ϕC V (2) ⊗ V (0) ⊕ V (0) ⊗ V (2) ⊕
2V (2) ⊗ V (0) ⊕ 2V (1) ⊗ V (1) ⊕
V (0) ⊗ V (0),

(65)

sp(6,C) ∼=ϕC ◦ε [X1]ϕC ◦ε ⊕ [X3]ϕC ◦ε ⊕
[X9]ϕC ◦ε ⊕ [Y7]ϕC ◦ε ⊕
[X6]ϕC ◦ε ⊕ [Y2]ϕC ◦ε ⊕
[H ]ϕC ◦ε

∼=ϕC ◦ε V (0) ⊗ V (2) ⊕ V (2) ⊗ V (0) ⊕
2V (0) ⊗ V (2) ⊕ 2V (1) ⊗ V (1) ⊕
V (0) ⊗ V (0),

(66)

where

X6 = X1,2,3, X7 = 1
2 X3,2,2, H = H1 + 2H2 + 2H3. (67)

Lemma 9.2: Suppose α and β are not both zero, then [αX6 + βY2]ϕC and [αX6 + βY2]ϕC ◦ε are
not Abelian.

Proof: A basis for [αX6 + βY2]ϕC and for [αX6 + βY2]ϕC ◦ε is given by

αX6 + βY2, αX5 − βY4, αX2 + βY6, αX4 − βY5. (68)

Consider

[αX6 + βY2, αX2 + βY6] = α2 X8 + αβ(H1 + 2H3) + β2Y8. (69)

Hence [αX6 + βY2]ϕC and [αX6 + βY2]ϕC ◦ε are not Abelian if α and β are not both zero. �

Lemma 9.2 implies that neither ϕC nor ϕC ◦ ε can be lifted to p(3, 1).
We have shown that we cannot lift ϕC, ϕC ◦ ε, �C, �C ◦ ε, ϑC, ςC, or �C◦ς to p(3, 1). Since ϕC,

ϕC ◦ ε, �C, �C ◦ ε, ϑC, ςC, and �C◦ς is a complete list of inequivalent embeddings of sl(2,C) ⊕
sl(2,C) into sp(6,C) (Theorem 6.6), we have the following theorem.

Theorem 9.3: There are no embeddings of p(3, 1) into sp(6,C).

X. CONCLUSIONS

We have classified the embeddings of the Poincaré algebra into the rank 3 simple Lie algebras.
Up to inner automorphism, we showed that there are exactly two embeddings of p(3, 1) into sl(4,C),
which are, however, related by an outer automorphism of sl(4,C) (Theorem 7.2). There is a unique
embedding of p(3, 1) into so(7,C), up to inner automorphism (Theorem 8.6), but no embeddings of
p(3, 1) into sp(6,C) (Theorem 9.3). We record the classification in Table II below.
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TABLE II. Classification of embeddings of p(3, 1) into the rank 3 simple
Lie algebras up to equivalence.

Rank 3 simple Lie algebra g Embeddings p(3, 1) ↪→ g

sl(4,C) ϕ̃1
A,X3,2,1

, ϕ̃1
A,Y2

so(7,C) �̃
1,0,0
B

sp(6,C) None

As an application, we also showed that each irreducible highest weight module of sl(4,C)
(not necessarily finite-dimensional) remains indecomposable when restricted to p(3, 1), with respect
to any embedding of p(3, 1) into sl(4,C): We thus created a large family of indecomposable
representations of p(3, 1) (Theorem 7.3).
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Phys. A: Math. Theor. 43, 045203 (2010).
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