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Abstract
When implemented using a reasonable Hamiltonian, the tomography of a three-level 4 atom
is complicated by the equidistant energy levels of the atom. This restricts the possible
transformations to those in the SO(3) subgroup of SU(3). Although complete reconstruction is
possible for a single 4 atom using a continuous set of tomograms, the discrete optimal set of
tomograms, related to mutually unbiased bases in dimension 3, are not accessible by time
evolution. We discuss here the search for an optimal set of discrete basis states compatible
with the reduced SO(3) symmetry of the system.

PACS numbers: 02.20.−a, 03.65.Ta, 03.65.Wj

1. Introduction: general comments on tomographic
reconstruction

For an n-dimensional quantum system, ρ is an n × n matrix
specified by n2

− 1 real parameters. Thus, any attempt
to determine ρ requires at least n2

− 1 measurements.
Tomographic reconstruction is based on measurements of the
populations of an appropriately ‘rotated’ density matrix ρ ′.
These measurements usually produce linear combinations of
the original parameters of ρ. Obviously the measurements
must be chosen so that they result in a non-singular linear
system of equations that can be inverted.

More specifically, the diagonal elements

ρkk = tr(ρ|k〉〈k|)= 〈k|ρ|k〉 (1)

of ρ are directly accessible provided we can measure the
population of levels k. To obtain off-diagonal matrix elements,
we need a ‘rotated basis’ U (�)|k〉, where � parameterizes an
n × n basis transformation U . Careful selection of a set of �i

should yield a system of invertible equations of the form

ω(�i )= 〈k|U †(�i )ρU (�i )|k〉. (2)

3 Present address: Department of Physics, University of Toronto, Toronto,
ON, Canada.

If there are no constraints, i.e. if any U (�) is achievable
experimentally, the optimal (in the sense of [1]) set of U (�i )

are those that transform basis states {|k〉} into a set of basis
states {|k ′

〉} that is unbiased with respect to the original {|k〉}

used to measure the populations [1]4.
The questions we wish to address here are the following:

(i) What is the next optimal choice of �i when there are
constraints so that some of the optimal U (�) described
in [1] cannot be achieved experimentally? (ii) How does one
define an optimal choice when there are constraints? In this
contribution, we will discuss this question in the context of
tomography of a single 4 atom.

2. The case of SU(2)

Let us first review the procedure for a quantum system
with two outcomes with no constraint, where the possible
transformations U (�) are elements of the group SU(2).

It is particularly convenient to write the density matrix ρ
in the form

ρ =

(
1
2 + z x + iy

x − iy 1
2 − z

)
=

1
2 1l2×2 + zσz + xσx + yσy . (3)

4 For a more mathematical description see Petz [1].
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The tomograms ω(α, β) are obtained using

U (α, β, γ )= e−iασz/2 e−iβσy/2 e−iγ σz/2, |1〉 = (1, 0)T (4)

(where T is transposed so that |1〉 is a column vector).
Explicitly,

ω(α, β)= 〈1|U †(α, β, γ ) ρU (α, β, γ )|1〉 (5)

=
1
2 + z cosα− x cosβ sinα + y sinα sinβ. (6)

The angle γ does not enter this expression and so can be
chosen at our convenience.

One can solve for the three unknowns x, y and z in
a number of ways: it is enough to choose the angles in
equation (6) so as to generate three linearly independent
equations. However, when acting on |1〉, the choices Uz =

U (0, 0, 0), Ux = U (0, 1
2π, 0) and Uy = U ( 1

2π,
1
2π,−

1
2π)

produce eigenstates of σz, σx and σy , respectively; these
eigenstates have been shown to be optimal [1] in the sense
that they are unbiased, e.g. |〈ψ±

x |χ±
y 〉|

2
=

1
2 .

The transformations Ux , Uy and Uz producing optimal
vectors have an interesting property: they are elements of a
finite group G of order 48 which map the eigenvectors of the
Pauli matrices into themselves.

The Pauli matrices σx , σy and σz (or, rather, their
eigenvectors) appear naturally even although the transforma-
tions U are elements of the SU(2) group rather than the related
algebra. The Pauli matrices (up to factors of i) are elements in
a set of eight matrices

±1l2×2, ±iσx , ±iσy, ±iσz, (7)

which form a finite subgroup of SU(2) called the Pauli
group in dimension 2 ℘2 [2]. G acts by conjugation on ℘2,
transforming elements of ℘2 into themselves.

3. The case of SU(3)

For a quantum mechanical system with three possible out-
comes, the transformations U between the states of the system
are SU(3) transformations. The density matrix ρ can be
conveniently written in the form

ρ =


1
3 + d + d∗ a +ωb +ω2c a∗ + b∗ + c∗

a∗ +ω2b∗ +ωc∗ 1
3 +ωd +ω2d∗ a +ω2b +ωc

a + b + c a∗ +ωb∗ +ω2c∗ 1
3 +ω2d +ωd∗

 (8)

with ω = e2π i/3. This parameterization of the density matrix is
not accidental.

Another parameterization, and one method for recon-
structing ρ, is discussed in [3]. However, the prescription
of [3] requires the continuous monitoring of some observables
so as to extract their time evolution. Such continuous
monitoring implies an infinite number of measurements.

Here, we focus instead on describing a finite number
of measurements and the related finite group structure. We
introduce the matrices

X =

0 0 1
1 0 0
0 1 0

 , Z =

1 0 0
0 ω 0
0 0 ω2

 . (9)

From this, we generate the following 24 matrices:

A−

k = ω−k X, Ak = ωk X2,

D−

k −ω−k Z2, Dk = ωk Z ,

Bk = ωk X2 Z , B−

k = ω−k X Z2,

Ck = ωk X2 Z2, C−

k = ω−k X Z

(10)

with k = 0, 1, 2. Augmented with Ik = ωk1l3×3, these 27
matrices form the Pauli subgroup ℘3 of SU(3). The subset
{A0, A−

0 , B0, B−

0 ,C0,C−

0 , D0, D−

0 , 1l3×3} is a basis for 3 × 3
Hermitian matrices; ρ, given by equation (7), takes the form

ρ =
1
3 1l + a A0 + a∗ A−

0 + bB0 + b∗ B−

0

+ cC0 + c∗C−

0 + d D0 + d∗ D∗

0 . (11)

Operators in sets A = {A0, A1, A2} and A−
=

{A−

0 , A−

1 , A−

2 } obviously commute with one another,
as do those in sets B and B−, C and C−, and D and
D−. Eigenvectors of A-type operators are unbiased with
those eigenvectors of operators of type B, C and D, e.g.
|〈ψα

i |χ
β

i 〉|
2
=

1
3 , where α = Ak or A−

k and β = Bk or B−

k .
The expansion of ρ in equation (10) is equivalent to an

expansion in terms of unbiased projectors, and thus the direct
generalization to SU(3) of the expansion of equation (3) in
terms of Pauli matrices.

Using (for instance) the eigenstate |ψ3
B0

〉 =

1
√

3
(1 ,−ω , 1)T of B0,

〈ψ3
B0

|ρ|ψ3
B0

〉 =
1
3 + (b0 + b∗

0). (12)

Next, using one eigenstate |ψ
−,3
B0

〉 =
1

√
3
(ω2 , ω2 , 1)T of B−

0 ,

〈ψ
−,3
B0

|ρ|ψ
−,3
B0

〉 =
1
3 −

1
2 (1 + i

√
3)(b0 + b∗

0)+ i
√

3b0. (13)

We can clearly continue in this way until we solve for every
unknown in ρ.

There also exists a (large) finite subgroup G̃ of SU(3)
that, in direct generalization of G for SU(2), transforms MUB
vectors into MUB vectors or, equivalently, that conjugates ℘3

into itself.

4. The Ξ atom

In a 4 atom, the levels are equally spaced. A resonant field
will simultaneously excite both 1 ↔ 2 and 2 ↔ 3 transitions,
resulting in a Hermitian operator of the form [4]0 1 0

1 0 1
0 1 0

∼ L̂ x/
√

2 , (14)

where L̂ x is the usual angular momentum operator. It is not
possible to separately access all transitions and there is a
dynamical symmetry reduction: the possible transformations
form a group equivalent to the subgroup SO(3) of SU(3). As
a consequence, one cannot prepare every MUB vector.

Reconstruction is possible using continuous SO(3)
transformations [4]; as with the prescription of [3], this
requires an infinite number of measurements and is not
efficient.
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We ask instead what is an optimal finite basis of
SO(3)-related vectors for tomography of the 4 atom. By
optimal, we expect not only that the number of vectors will
be minimal but also that they will minimize the error in
the procedure for reconstructing ρ. We ask if we can find a
finite subgroup of SO(3) that acts on these basis states in the
manner that the finite subgroups G and G̃ of SU(2) and SU(3)
respectively, described in sections 2 and 3, act on elements of
a mutually unbiased basis.

We performed a numerical search for the most
‘MUB-like’ vectors reachable from |1〉 by SO(3) trans-
formation. We searched for four families of two orthogonal
vectors such that the distance function [5]

F =

4∑
16b6b′

2∑
j=1

2∑
j ′=1

(
|〈ψb

j (�
b
j ) |ψ

b′

j ′ (�
b′

j ′)〉| −χ
bb′

j j ′

)2
, (15)

χbb′

j j ′ =

{
δ j j ′ if b = b′,

1
√

3
if b 6= b′

is minimum. Here, we note that the function F is 0 if we input
the usual MUB vectors [5]. Some intuition in the solution
vectors is gained by mapping the resulting set of vectors
to points in R3 using (〈L x 〉, 〈L y〉, 〈L z〉). We found that the
resulting vectors are always at the vertices of a cube. The
symmetry group of the cube is a finite group: the octahedral
group, containing 24 elements. Unfortunately, these vectors
connected by octahedral transformations only produce five
linearly independent tomograms: we cannot reconstruct the
density matrix using those vectors. (The number of linearly
independent tomograms is related to the SO(3) quadrupole
moments of the basis described in [3].)

An alternative to the most ‘MUB-like’ vectors is to search
for a set of vectors that will produce the largest determinant of
the resulting system of equations in the unknowns. We expect
that maximizing the determinant will minimize the error, just
like the usual MUB vectors also maximize this determinant
for SU(2) and SU(3).

Searching for those vectors that maximize the deter-
minant using SO(3) transformation yields a set of eight
linear vectors that (by construction) allow us to recover the
unknowns. However, these vectors are distinct from the eight
vectors minimizing F in equation (15).

Unfortunately, this new set of vectors maximizing the
determinant displays no obvious symmetry, although they
could be related to the icosahedra (the solid with 12 vertices
described by a finite group of 60 elements) or the dodecahedra
(the solid with 20 vertices also described by a finite subgroup
with 60 elements). Even if we do find some ‘nice’ symmetry
property between those vectors that optimize the determinant

and some regular polytope, there remains the question: what
is the meaning of the extra vertices? Does this imply that there
is more than one choice of optimal basis?

5. Conclusion

In this contribution, we have emphasized the role of finite
groups in tomography. The generalized Pauli matrices (in two
and three dimensions) form a subgroup of SU(2) and SU(3),
respectively. Eigenvectors of the generalized Pauli matrices
are MUB vectors, and there is a finite group transforming
these vectors among themselves. Besides satisfying the usual
overlap condition, MUB vectors also produce a maximum
in the determinant of the system associated with the
tomograms.

Finite groups appear to be natural starting points for
the search of optimal basis vectors, particularly in systems
like 4, where a dynamical reduction of the symmetry from
SU(3) to SO(3) prevents the implementation of the familiar
MUB transformations. For atoms in the 3 configuration, the
symmetry is reduced from SU(3) to SU(2)× U(1) [4], and
MUBs cannot be implemented either.

In the 4 atom, the vectors that minimize the distance
proposed in [5] are at the vertices of a cube, and there
is a finite group associated with this solid. Unfortunately,
the vectors optimizing this distance do not produce enough
linearly independent tomograms to reconstruct the density
matrix. An alternative set of vectors has been found: it is one
that maximizes the determinant of the associated system of
tomograms. However, this set does not minimize the distance
of [5]. Moreover, there are no obvious group properties
associated with these vectors at the moment.
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